www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - spline-Interpolation
spline-Interpolation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

spline-Interpolation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:58 Mi 26.11.2014
Autor: mimo1

Aufgabe
Falls die Werte der ableitung an den Randbedingungen nicht bekannt ist, verwendet man bei der spline-Interpolation häufig die not-a-knot bedingungen
[mm] s_1'''(x_1)=s_2'''(x_1), s_{n-1}'''(x_{n-1})=s_n'''(x_{n-1}), [/mm] die besagen, dass der Spline auf den Teilintervallen [mm] [x_0,x_2] [/mm] und [mm] [x_{n-2},x_n] [/mm] durch je ein einziges kubisches Polynom gegeben ist.

Stelle für die äqidistanten Zerlegung [mm] x_j=x_0+jh [/mm] (j=0,1,...,n) das Gleichungssystem für den interpolierten kubischen Spline mit der "not-a-knot" bedingung auf. Zeige, das stets eine eindeutige Lösung existiert.

Hallo

mein Ansatz:
durch die 3. Ableitung also
[mm] s_1'''(x_1)=s_2'''(x_1) \Rightarrow d_1=d_2 [/mm]

[mm] s_{n-1}'''(x_{n-1})=s_n'''(x_{n-1}) \Rightarrow d_{n-1}=d_{n} [/mm]

mit der 2. Ableitung ist
[mm] s_j''(x_{j+1})=s_{j+1}''(x_{j+1}) [/mm] man erhält dann sei [mm] h_j=x_{j+1}-x_j [/mm]

dann ist [mm] 2c_j+ 6d_j\cdot h_j=2c_{j+1} \Rightarrow d_j=\bruch{c_{j+1}-c_j}{3h_j} [/mm]   (1)

d.h. dann für [mm] d_1=d_2 \rightarrow d_1=\bruch{c_2-c_1}{3h_1}=\bruch{c_3-c_2}{3h_2} \RIghtarrow h_2c_1-c_2(h_2+h_1)+h_1c_3=0 [/mm]

und für [mm] d_{n-1}=d_n [/mm] : [mm] \bruch{c_n-c_{n-1}}{3h_{n-1}}=\bruch{c_{n+1}-c_n}{3h_n} \Rightarrow h_n\cdot c_{n-1}-c_n(h_n+h_{n-1})+h_{n-1}\cdot c_{n+1}=0 [/mm]

spline Interpolationspolynom hat folg. form

[mm] s_j(x)=a_j+b_j(x_x_j)+c_j(x-x_j)^2+d_j(x-x_j)^3 [/mm]

haben [mm] a_j=y_j=s(x_j) [/mm] und mit [mm] s_j(x_{j+1})=s_{j+1}(x_{j+1}) [/mm] folgt dann

[mm] y_{j+1}=y_j+b_j(x_{j+1}-x_j)+c_j(x_{j+1}-x_j)^2+d_j(x_{j+1}-x_j)^3 \rightarrow \bruch{y_{j+1}-y_j}{h_j}=b_j+c_j(x_{j+1}-x_j)^2+d_j(x_{j+1}-x_j)^3 [/mm]

setzte dann für [mm] d_j [/mm]   (1) ein und erhalte dann  

[mm] =b_j+c_j(x_{j+1}-x_j)^2+\bruch{c_{j+1}-c_j}{3}(x_{j+1}-x_j)^3 [/mm]

multipliziere diese gleichung mit 3 und erhalte dann

(I)    [mm] \bruch{3(y_{j+1}-y_j)}{h_j}=3\cdotb_j+3c_j\cdot h_j +(c_{j+1}-c_j)\cdot h_j [/mm]

(II) [mm] \bruch{3(y_{j+2}-y_{j+1}}{h_{j+1}}=3\cdot b_{j+1}+3c_{j+1}\cdot h_{j+1}+(c_{j+2}-c_{j+1})h_{j+1} [/mm]

multiplizier (I) mit (-1) und addiere mit der (II):
[mm] \bruch{3(y_{j+1}-y_j)}{h_j}-\bruch{3(y_{j+2}-y_{j+1}}{h_{j+1}} [/mm] = [mm] c_jh_j+2c_{j+1}(h_{j+1}+h_j)+ c_{j+2}h_{j+1} [/mm]

man erhält dann folg Gleichungen  wenn man für [mm] x_0=x_0, x_1=x_0+h,...,x_n=x_0+nh [/mm] einsetzt

1) [mm] h\cdot c_1-2\cdot c_2+h\cdot c_3=0 [/mm]
2) [mm] \bruch{3(y_2-y_1)-3(y_1-y_0)}{h}=c_0h+2hc_1+c_2\cdot [/mm] h
3) [mm] \bruch{3(y_3-y_2)-3(y_2-y_1)}{h}=c_1h+2hc_2+c_3\cdot [/mm] h
            [mm] \vdots [/mm]

n) [mm] \bruch{3(y_{n}-y_{n-1})-3(y_{n-1}-y_{n-2})}{h}=c_{n-2}h+2hc_{n-1}+c_n\cdot [/mm] h

n+1) [mm] h\cdot c_{n-1}-2h\cdot c_n [/mm] + [mm] h\cdot c_{n+1}=0 [/mm]


ich erhalte dann folg matrix

[mm] \pmat{ 0 & h &-2h & h & 0& =&\cdots &0\\ h & 4 h & h & 0 &0 & cdots & 0 \\ 0&h & 4h &h & 0 & \cdots &0 &0\\ \vdots \\ 0&0&0&\cdots & h &4h & h &0\\ 0&0&0&0& h&-2h&h} \cdot \vektor{c_0\\ c_1\\c_2\\ \vdots \\ c_n\\c_{n+1}} [/mm] = [mm] \cdots [/mm]



Stimmt die Matrix oder das was ich bis hier gemacht habe? was man die eindeutigkeit nachweisen will dann muss man die determinate überprüfen d.h ich habe mit laplace nach der 1. Spalte entwickelt aber dann erhalte ich wieder eine große matrix. wie mach ich das ?

ich bin für jede hilfe dankbar



        
Bezug
spline-Interpolation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Sa 29.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de