www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stationäre Pkte
stationäre Pkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stationäre Pkte: rangehen
Status: (Frage) beantwortet Status 
Datum: 09:55 Mi 28.06.2006
Autor: useratmathe

Aufgabe
Ermittle alle stationären Punkte von
[mm] f(x,y)=x^{3}-y^{3}+6xy [/mm]

Wie lautet die Gleichung der Tangentialebene an die Fläche z=f(x,y) in P (1;0;1)?

Hallo,

also wie ich das bei Fkt. einer Veränderlicher machen würde, wäre die 1.Ableitung bilden und dann 0 setzen und mit der 2ten überprüfen.

Geht das hier auch?
[mm] f_{x}=3x²+6y [/mm] = 0  [mm] \Rightarrow x=\sqrt{-2y}? [/mm]
[mm] f_{y}=-3y²+6x [/mm] = 0  [mm] \Rightarrow [/mm] y=...

Wahrscheinlich nicht?

Und wie mach ich das mit der Tangentialebene?
[mm] z=x^{3}-y^{3}+6xy [/mm] mit P(1;0;1):
[mm] 1=1^{3}-0^{3}+6*1*0?? [/mm]

        
Bezug
stationäre Pkte: Hinweise + Korrekturen
Status: (Antwort) fertig Status 
Datum: 10:14 Mi 28.06.2006
Autor: Roadrunner

Hallo useratmathe!



> also wie ich das bei Fkt. einer Veränderlicher machen
> würde, wäre die 1.Ableitung bilden und dann 0 setzen und
> mit der 2ten überprüfen.

Mit der 2. Ableitung überprüfen brauchst Du m.E. hier nicht, da ja nur nach den stationären Punkten gefragt ist.

  

> Geht das hier auch?
>  [mm]f_{x}=3x²+6y[/mm] = 0  [mm]\Rightarrow x=\sqrt{-2y}?[/mm]

[notok] Hier unterschlägst Du eine Lösung: [mm] $x_{1/2} [/mm] \ = \ [mm] \red{\pm} [/mm] \ [mm] \wurzel{-2y}$ [/mm] .

Und das nun z.B. in die 2. Gleichung einsetzen und umstellen.


> Und wie mach ich das mit der Tangentialebene?

Die Formel für die Tangentialebene im Punkt $P \ [mm] \left( \ x_0 \ ; \ y_0 \ ; \ z_0 \ \right)$ [/mm] lautet:

$ z \ = \ t(x,y) \ = \ [mm] f(x_0,y_0) [/mm] + [mm] f_x(x_0,y_0) \cdot (x-x_0) [/mm] + [mm] f_y(y_0,y_0) \cdot (y-y_0) [/mm] $


Gruß vom
Roadrunner


Bezug
                
Bezug
stationäre Pkte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:18 So 02.07.2006
Autor: useratmathe

Danke Roadrunner.

also hab jetzt folgendes:

[mm] 0=y(\bruch{3}{4}y^{3}+6) [/mm]
[mm] \Rightarrow y_{1}=0 [/mm] und [mm] y_{2}=\wurzel[3]{-8}=-2 [/mm]

[mm] 0=9x(x^{2}-4) [/mm]
[mm] \Rightarrow x_{1}=0 [/mm] und [mm] x_{2}= \pm [/mm] 2

Wie kann ich hier eine Lösung ausschließen?

[mm] x_{1} [/mm] und [mm] y_{1} [/mm] in [mm] z=f(x_{1},y_{1}) [/mm] eingesetzt, ergäbe ja
[mm] \Rightarrow P_{1} [/mm] (0|0|0) und [mm] P_{2} [/mm] (2|-2|-8)

Stimmt das?


Muss ich bei der Ebene dann z=1, also
1=3x-3+6y setzen oder
z=3x-3+6y

Bezug
                        
Bezug
stationäre Pkte: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:45 Di 04.07.2006
Autor: useratmathe

Ist der Punkt oben in 3D oder 2D anzugeben. Also mit z Koordinate oder ohne?

Bezug
                        
Bezug
stationäre Pkte: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 06.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de