www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - stereographische Funktion
stereographische Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stereographische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Fr 26.06.2015
Autor: nkln

Aufgabe
Sei [mm] $S^1:=\{Z \in \IC ; |Z|=1\} =\{Z\in Re(Z)^2+Im(Z)^2=1\} [/mm] $ der Einheitskreis mit Mittelpunkt  $0$

Zeigen sie

[mm] $\Phi :\IR \to S^1\setminus\{i\}; [/mm] r [mm] \mapsto \frac{2r}{r^2+1} +\frac{r^2-1}{r+1} \cdot [/mm] {}i $ ist bijektiv mit der umkehrabbildung $ [mm] \Phi^{-1} :S^1\setminus\{1\} \to \IR; [/mm] z  [mm] \mapsto \frac{Re(z)}{1-Im(z)} [/mm] $

Hallo

Wie gehe ich die sache an zeige  ich injektivitaet und surjektivitaet oder gibst da nen trick,weil ich mir bei den umformungen nicht sicher bin...:/

        
Bezug
stereographische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Fr 26.06.2015
Autor: fred97


> Sei [mm]S^1:=\{Z \in \IC ; |Z|=1\} =\{Z\in Re(Z)^2+Im(Z)^2=1\}[/mm]
> der Einheitskreis mit Mittelpunkt  [mm]0[/mm]
>  
> Zeigen sie
>
> [mm]\Phi :\IR \to S^1\setminus\{i\}; r \mapsto \frac{2r}{r^2+1} +\frac{r^2-1}{r+1} \cdot {}i[/mm]

Diese Abb. Vorschrift hast Du falsch abgeschrieben !


> ist bijektiv mit der umkehrabbildung [mm]\Phi^{-1} :S^1\setminus\{1\} \to \IR; z \mapsto \frac{Re(z)}{1-Im(z)}[/mm]
>  
> Hallo
>
> Wie gehe ich die sache an zeige  ich injektivitaet und
> surjektivitaet

Ja

>  oder gibst da nen trick,weil ich mir bei den
> umformungen nicht sicher bin...:/

Zeig Deine Umformungen, aber mir dem richtigen [mm] \PHi. [/mm]

FRED


Bezug
                
Bezug
stereographische Funktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:33 Fr 26.06.2015
Autor: nkln

yes I beg your pardon!

$ [mm] \Phi :\IR \to S^1\setminus\{i\}; [/mm] r [mm] \mapsto \frac{2r}{r^2+1} +\frac{r^2-1}{r^2+1} \cdot [/mm] {}i $

f ist injektiv genau dann wenn $ [mm] \Phi(x)=\Phi(r) \Rightarrow [/mm] x=r , [mm] \forall [/mm] x,r [mm] \in \IR [/mm]  $

Beweis

[mm] $\frac{2r}{r^2+1} +\frac{r^2-1}{r^2+1} \cdot [/mm] {}i = [mm] \frac{2x}{x^2+1} +\frac{x^2-1}{x^2+1} \cdot [/mm] {}i$

[mm] $\gdw \frac{i\cdot{}(r-i)}{(r+i)} [/mm] = [mm] \frac{i\cdot{}(x-i)}{(x+i)} [/mm] | [mm] \frac{1}{i}$ [/mm]

[mm] $\gdw \frac{(r-i)}{(r+i)} [/mm] = [mm] \frac{(x-i)}{(x+i)} [/mm] $

[mm] $\gdw \frac{(r-i+i-i)}{(r+i)} [/mm] = [mm] \frac{(x-i+i-i)}{(x+i)} [/mm] $

[mm] $\gdw \frac{(r+i}{(r+i)}-\frac{(2i)}{(r+i)} [/mm] = [mm] \frac{(x+i}{(x+i)}-\frac{(2i)}{(x+i)} [/mm] $


[mm] $\gdw [/mm] 1 [mm] -\frac{(2i)}{(r+i)} =1-\frac{(2i)}{(x+i)} [/mm] | -1 | *(-1) |*2i $

[mm] $\gdw(r+i) [/mm] =(x+i) |-i$

[mm] $\gdw [/mm] r =x$


[mm] $\Phi$ [/mm] ist injektiv :)



Beweis surjektiv

$ [mm] \Phi :\IR \to S^1\setminus\{i\}; [/mm] r [mm] \mapsto \frac{2r}{r^2+1} +\frac{r^2-1}{r^2+1} \cdot [/mm] {}i $

[mm] $s=\frac{2r}{r^2+1} +\frac{r^2-1}{r^2+1} \cdot [/mm] {}i $


[mm] $\gdw [/mm] s= [mm] \frac{i\cdot{}(r-i)}{(r+i)} |*\frac{1}{i} [/mm] $

[mm] $\gdw [/mm] s= [mm] \frac{(r-i)}{(r+i)}| [/mm] -1 | *(-1) |*2i|-i $


mit den umformungen wie oben kommt heraus

[mm] $r=\frac{2}{s-i} [/mm] -i$

daraus folgt ,dass [mm] $\Phi$ [/mm] surjektiv und injektiv ist, richtig fred oder?



Bezug
                        
Bezug
stereographische Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Sa 27.06.2015
Autor: nkln

nicht gut?:/

Bezug
                        
Bezug
stereographische Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 28.06.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de