www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stereographische Projektion
stereographische Projektion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stereographische Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 Fr 08.06.2007
Autor: Ron85

Hallo Leute.

Die Sphäre [mm] S^{2} \subset \IR^{3} [/mm] , gegeben durch
[mm] x^{2}+y^{2}+(z-1)^{2}=1 [/mm] kann durch stereogr. Projektion fast vollständig auf die Ebene abgebildet werden. Sei also
[mm] \pi_{1}: S^{2} [/mm] --> [mm] \IR^{2} [/mm] diese Projektion, die einen Punkt p=(x,y,z) der Sphäre [mm] S^{2} [/mm] ohne den Nordpol N=(0,0,2) auf den Schnittpunkt der xy-Ebene mit der Geraden , die N und p verbindet, abbildet.

Wie sieht mein [mm] \pi_{1} [/mm] aus ? Wie erhalte ich es?

        
Bezug
stereographische Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Fr 08.06.2007
Autor: leduart

Hallo
Zeichne das doch mal in der x-z Ebene auf.
ein Kreis [mm] x^2+(z-1)^2=1 [/mm] dann vom Nordpol (also x=0,z=2) eine Gerade durch irgendeinen Punkt. Schnitt mit der x-Achse gibt die projizierte x koordinate, (Punkt auf dem Äquator, z=x=1, ergibt x=2, da das Ganze Drehsym zur z-Achse, werden alle Punkte auf dem Äquator auf den Kreis [mm] x^2+y^2=2^2 [/mm] projiziert. Alle Breitenkreise werden auf Kreise abgebildet, Längenkreise auf Geraden durch 0,0 den Rest aus der Zeichnung mit Strahlensatz ablesen.
Gruss leduart

Bezug
                
Bezug
stereographische Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 08.06.2007
Autor: Ron85

Sorry, aber das versteh ich nicht ganz.
Kann ich [mm] \pi_{1} [/mm] nicht einfach aus den Angaben erhalten?

Bezug
                        
Bezug
stereographische Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Fr 08.06.2007
Autor: Christian

Hallo.

Natürlich kannst Du. Du mußt einfach die entsprechende Geradengleichung aufstellen, dann z=0 setzen, nach deinem Parameter auflösen und daraus dann den Projektionspunkt ausrechnen.

Gruß,
Christian

Bezug
                                
Bezug
stereographische Projektion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:21 Fr 08.06.2007
Autor: Ron85

Wie sieht mein [mm] \pi_{1} [/mm] dann aus?

Bezug
                                        
Bezug
stereographische Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Fr 08.06.2007
Autor: leduart

Hallo
Was ist die Schwierigkeit mit der Gleichung die Christian geschrieben hat. Gerade durch 2 Pkt. kannst du doch sicher?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de