www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stet. Funk. in metr. Raum
stet. Funk. in metr. Raum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stet. Funk. in metr. Raum: Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 09:28 Di 15.11.2011
Autor: clemenum

Aufgabe
Seien $(X,d)$ ein metrischer Raum und $f,g: [mm] X\rightarrow \mathbb{R}$ [/mm] stetige Funktionen. Man zeige:
(i) $f(x) = g(x) [mm] \forall x\in [/mm] A [mm] \Rightarrow [/mm] f(x) = g(x) [mm] \forall [/mm] x [mm] \in \bar{A}$ [/mm]
(ii) $f(x) [mm] \le [/mm] g(x) [mm] \forall x\in [/mm] A [mm] \Rightarrow [/mm] f(x) [mm] \le [/mm] g(x) [mm] \forall [/mm] x [mm] \in \bar{A}$ [/mm]

Zusatzfrage: Gilt dies auch für topologische Räume?

Zu (i): Es ist also zu zeigen, dass zwei Funktionen, die in einer (eventuell offenen) Teilmenge A übereinstimmen, auch in den Funktionswerten ihres Abschluss übereinstimmen (d.h. ihrer kleinsten abgeschlossenen Obermenge).

Mein Problem ist, dass ich nicht weiß, wie ich an den Beweis herankommen soll. Ich denke außerdem nicht, dass ich die Stetigkeit überhaupt brauche.
Kann mir jemand helfen und sagen, was ich genau definitionsgemäß zu zeigen habe. Auch wenn mir die Stetigkeitsdefinition in metrischen Räumen bekannt ist, weiß ich leider trotzdem nicht, wieso ich erstes die Stetigkeit brauche zweitens, was hier in Definitionsschreibweise überhaupt zu zeigen ist.

Kann mir da jemand aushelfen?

        
Bezug
stet. Funk. in metr. Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 15.11.2011
Autor: fred97


> Seien [mm](X,d)[/mm] ein metrischer Raum und [mm]f,g: X\rightarrow \mathbb{R}[/mm]
> stetige Funktionen. Man zeige:
> (i) [mm]f(x) = g(x) \forall x\in A \Rightarrow f(x) = g(x) \forall x \in \bar{A}[/mm]
> (ii) [mm]f(x) \le g(x) \forall x\in A \Rightarrow f(x) \le g(x) \forall x \in \bar{A}[/mm]
>
> Zusatzfrage: Gilt dies auch für topologische Räume?



>  Zu (i): Es ist also zu zeigen, dass zwei Funktionen, die
> in einer (eventuell offenen) Teilmenge A übereinstimmen,
> auch in den Funktionswerten ihres Abschluss übereinstimmen

Genau.


> (d.h. ihrer kleinsten abgeschlossenen Obermenge).
>
> Mein Problem ist, dass ich nicht weiß, wie ich an den
> Beweis herankommen soll. Ich denke außerdem nicht, dass
> ich die Stetigkeit überhaupt brauche.

Doch, die brauchst Du.


> Kann mir jemand helfen und sagen, was ich genau
> definitionsgemäß zu zeigen habe.


Das hast Du doch oben gesagt:  gilt f=g auf A, so folgt: f=g auf [mm] \overline{A} [/mm]




>  Auch wenn mir die
> Stetigkeitsdefinition in metrischen Räumen bekannt ist,
> weiß ich leider trotzdem nicht, wieso ich erstes die
> Stetigkeit brauche zweitens, was hier in
> Definitionsschreibweise überhaupt zu zeigen ist.
>  
> Kann mir da jemand aushelfen?  


Sei [mm] x_0 \in \overline{A}. [/mm] Dann gibt es eine Folge [mm] (x_n) [/mm] in A mit: [mm] x_n \to x_0. [/mm]

Da f und g stetig sind, haben wir:

               [mm] f(x_n) \to f(x_0) [/mm] und [mm] g(x_n) \to g(x_0). [/mm]

Aus [mm] f(x_n)=g(x_n) [/mm] für alle n folgt dann [mm] f(x_0)=g(x_0) [/mm]

FRED


Bezug
                
Bezug
stet. Funk. in metr. Raum: Danksagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:23 Di 15.11.2011
Autor: clemenum

Hallo Fred!

Vielen Dank für deine Antwort, ich habe es nun verstanden und damit das zweite Problem auch gelöst! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de