www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - stetige Funktionen, Intervall
stetige Funktionen, Intervall < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Funktionen, Intervall: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:01 Do 14.12.2006
Autor: Sharik

Aufgabe
Die Funktion f:[0,1] [mm] \to \IR [/mm] sei stetig und es gelte f(0)=f(1). Zeige, dass es dann ein [mm] x_{2} \in [/mm] [0,1/2] mit [mm] f(x_{2})=f(x_{2}+1/2) [/mm] gibt.
Gibt es zu jedem n [mm] \in \IN [/mm] ein [mm] x_{n} \in [/mm] [0,1-1/n] mit
[mm] f(x_{n})=f(x_{n}+1/n) [/mm] ?
(Beweis oder Gegenbeispiel!)
Tip: Was ist g(0)+g(1/2) für g(x):= f(x+1/2)- f(x) ?

Hallo Leute,

Ich verstehe nicht was [mm] f(x_{2})=f(x_{2}+1/2) [/mm] bedeuten soll, wie ich mir das vorstellen soll.
Kann mir da jemand helfen?

Danke schon mal im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
stetige Funktionen, Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Do 14.12.2006
Autor: SEcki


> Ich verstehe nicht was [mm]f(x_{2})=f(x_{2}+1/2)[/mm] bedeuten soll,
> wie ich mir das vorstellen soll.

Na, du hast eine Funktion, und zwei Werte aus dem Urbildbereich, und dann sollen die Bilder gleich sein. zB beim Sinus [m]\sin(0)=\sin(\pi)=0[/m], so als Vergleich.

SEcki

Bezug
        
Bezug
stetige Funktionen, Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Do 14.12.2006
Autor: Gonozal_IX

Was du dir darunter vorstellen kannst:

Der einfachheit halber sei f(0) = f(1) = 0.
Und nimm dir jetzt mal die Funktion f(x) = -x(x-1)

Das ist eine nach unten geöffnete Parabel mit ihren NST bei 0 und 1.

Der Satz sagt nun letztendlich nichts weiter aus, daß es ein [mm] x_0 \in [0,\bruch{1}{2}][/mm] gibt, das den gleichen Funktionswert hat, wie ein [mm] x_1 [/mm] aus [mm] [\bruch{1}{2}, [/mm] 1], d.h. [mm] f(x_0)=f(x_1) [/mm] mit der besonderen Eigenschaft, daß [mm] x_1 [/mm] = [mm] x_0 [/mm] + [mm] \bruch{1}{2} [/mm] ist. In der oben genannten Funktion müssten das [mm] x_0 [/mm] = [mm] \bruch{1}{4} [/mm] und [mm] x_1 [/mm] = [mm] \bruch{3}{4} [/mm] sein.

Als Tip für den Beweis: Zwischenwertsatz! + den bereits gegebenen Tip anwenden, dann stehts eigentlich schon da.

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de