www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - stetige Zufallsvariableb
stetige Zufallsvariableb < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige Zufallsvariableb: Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 18:00 So 15.05.2011
Autor: Klopapier20

Aufgabe
Aufgabe: Es sei Xa eine Zufallsvariable mit Dichtefunktion fa, für die mit a element R folgendes gilt:
- außerhalb des Intervalles [a;a+1] ist fa konstant Null,
- fa(a) =0 und
- auf [a;a+1] ist fa gegeben durch das Stück eines Parabelastes. Die zugehörige Parabel besitzt ihren Scheitelpunkt in t=a+1.
(a) Skizzieren Sie fa.
(b) Bestimmen Sie die Funktionsvorschrift von fa. (Verwenden Sie für Ihren Ansatz die
Scheitelpunktform der Parabel.) Begründen Sie hierbei stichwortartig die einzelnen
Schritte Ihres Vorgehens.
(c) Berechnen Sie für a=0 die Wahrscheinlichkeit dafür, dass X0 einen Wert größer als 12 annimmt. Markieren Sie den Bereich, der zu dieser Wahrscheinlichkeit gehört in einer Skizze für f0.
(d) Berechnen Sie ebenfalls für a=0 den Erwartungswert von X0 und markieren Sie ihn
in Ihrer Skizze.

Hat jmd. ein Tipp, wie ich vorgehen kann?
ich dachte, die skizze geht folgendermaßen:
bis x=O ist y=0 immer und danan steigt der Graph von P(0|0) bis x=1 steil nach oben. Und dann geht es weiter ab x=1 immer mit y=0 weiter...
dann hätte ich für c=0 (y-achsenabschnitt). dann hätte ich als funktionsgleichung: f(x)=ax²+bx

jetzt komme ich nicht mehr weiter... :

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

        
Bezug
stetige Zufallsvariableb: Scheitelpunktansatz
Status: (Antwort) fertig Status 
Datum: 10:11 Mo 16.05.2011
Autor: Infinit

Hallo,
Deine Überlegung ist schon in Ordnung. Am rechten Ende des Definitionsbereiches für Dichtewerte ungleich Null befindet sich der Scheitelpunkt der Parabel, die also nach unten geöffnet ist.
Allgemein gilt für die Scheitelpunktform einer quadratischen Gleichung
[mm] f(x) = ax^2 +bx +c [/mm] mit den Koordinaten des Scheitelpunktes [mm] (x_s, y_s) [/mm] die Darstellung
[mm] f(x) = a(x-x_s)^2 + y_s [/mm]
Ein Koeffizientenvergleich ergibt dann
[mm] x_s = \bruch{-b}{2a} [/mm] und
[mm] y_s = c - \bruch{b^2}{4a} [/mm]

Denke jetzt noch dran, dass das Integral unter diesem Parabelast eine 1 ergeben muss, damit das Ganze eine Dichtefunktion ist.
Viele Grüße,
Infinit


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de