www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - stetigkeit
stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 17.05.2006
Autor: Phys

in unserem Aufgabenblatt ist folgende (meiner meinung nach:unlösbare Aufgabe;-) für die ich nichtmal nen Lösungsansatz habe:
Sei I=[0,1] und V= [mm] C^{1}(I) [/mm] versehen mit der Norm:
[mm] \parallel [/mm] f [mm] \parallel [/mm] = [mm] \max_{x\in I}\wurzel{ |f(x) |^2+|f'(x)|^2} [/mm]
und [mm] V_{0} [/mm] der Raum [mm] C^1(I) [/mm] versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)|.Sei [/mm] W=C(I) mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)| [/mm] überprüfen sie die Stetigkeit von [mm] D_{1}:V \to [/mm] W,f [mm] \to [/mm] f'und [mm] D_{2}:V_{0} \to [/mm] W,f [mm] \to [/mm] f' und dann soll noch gegebenenfalls  [mm] \parallel D_{1} \parallel [/mm] bestimmt werden. Ich wäre für jede Hilfe sehr dankbar, da ich momentan zeimlich auf dem schlauch steh(also keinen Ansatz habe)

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 18.05.2006
Autor: MatthiasKr

Hallo phys,

erstmal: ruhig blut! denn von unlösbarkeit ist diese aufgabe meilenweit entfernt.... ;-)

also, du hast hier verschiedene funktionenräume mit verschiedenen normen gegeben und sollst prüfen, ob der ableitungsoperator jeweils stetig ist.

Zunächst mal ist der Abl.operator ja linear. Wie kann man also die stetigkeit charakterisieren? hat man einen linearen Op. [mm] $D:X\to [/mm] Y$ dann ist dieser gd. stetig, wenn es eine konstante $C$ gibt mit [mm] $\|Dx\|_Y\le C\cdot \|x\|_X,\forall x\in [/mm] X$. Die kleinste solche Konstante $C$ nennt man dann die Operatornorm [mm] $\|D\|$ [/mm] des Operators.

Nehmen wir also mal [mm] $D_1:V\to [/mm] W, [mm] f\mapsto [/mm] f'$. Du musst prüfen, ob du die  [mm] $C^0$-Norm, [/mm] also die maximum-norm, der ableitung durch die [mm] $C^1$-Norm [/mm] der funktion abschätzen kannst. es gilt doch aber

[mm] $\|f'\|_\infty=\max_{x \in I}|f'(x)|\le \max_{x \in I}\wurzel{ |f(x) |^2+|f'(x)|^2}=\|f\|_V$ [/mm]

[mm] $D_1$ [/mm] ist also stetig! Und [mm] $\|D_1\|$ [/mm] haben wir nebenbei auch schon bestimmt, siehst du das? [mm] $D_2$ [/mm] kannst du ja jetzt selbst mal untersuchen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de