www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - stetigkeit beweisen
stetigkeit beweisen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit beweisen: Frage
Status: (Frage) beantwortet Status 
Datum: 18:14 Mo 02.05.2005
Autor: Jason

Hy hänge in den Seilen bei Stetigkeit und
Differenzierbarkeit. Mit fehlt einfach zu viel Grundwissen, hab ich
das Gefühl.

Hab hier einige Aufgeben, die nicht schwer aussehen, wenn man den
Hintergrund versteht!
z.B. Ist Die Aussage richtig :
es sei a  [mm] \in [/mm] D  [mm] \subset \IR [/mm] und f : D  [mm] \to \IR [/mm]  eine stetige Funktion

|f|:D  [mm] \to \IR, [/mm] x [mm] \to [/mm] |f(x)| ist stetig

a ist Element D und D Teilmenge der reelen Zahlen, und f ist eine
Abbildung von D in  [mm] \IR. [/mm]

Die Zeichen verstehe ich einigermaßen ,aber Kann mit jemand die Sache so erläuter, das ich mir das irgendwie vorstellen könnte.
Grüße

Jason

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
stetigkeit beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 02.05.2005
Autor: Marcel

Hallo Jason!

> Hy hänge in den Seilen bei Stetigkeit und
> Differenzierbarkeit. Mit fehlt einfach zu viel Grundwissen,
> hab ich
> das Gefühl.
>  
> Hab hier einige Aufgeben, die nicht schwer aussehen, wenn
> man den
> Hintergrund versteht!
> z.B. Ist Die Aussage richtig :
>  es sei a  [mm]\in[/mm] D  [mm]\subset \IR[/mm] und f : D  [mm]\to \IR[/mm]  eine
> stetige Funktion
>  
> |f|:D  [mm]\to \IR,[/mm] x [mm]\to[/mm] |f(x)| ist stetig
>  
> a ist Element D und D Teilmenge der reelen Zahlen, und f
> ist eine
> Abbildung von D in  [mm]\IR.[/mm]
>
> Die Zeichen verstehe ich einigermaßen ,aber Kann mit jemand
> die Sache so erläuter, das ich mir das irgendwie vorstellen
> könnte.

Ich versuche es mal. Wenn du dir was vorstellen willst, dann zeichne eine stetige Funktion $f$ (mit Definitionsbereich $D [mm] \subseteq \IR$). [/mm] Was macht nun die Funktion $|f|$? Naja, wenn der Graph von $f$ im kartesischen Koordinatensystem oberhalb der $x$-Achse liegt, dann passiert nichts. Wenn $f$ aber negative Funktionswerte hat (das heißt, wenn der Graph von $f$ unterhalb der $x$-Achse verläuft), dann wird dieser Bereich an der $x$-Achse gespiegelt!

Beispiel: $f: [mm] \underbrace{\IR}_{=D} \to \IR$, [/mm] $f(x)=x$ [mm] $\forall [/mm] x [mm] \in \IR$. [/mm]
Der Graph von $f$ ist eine Gerade durch den Ursprung im kartesischen koordinatensystem, deren Steigung $=1$ ist. Wie sieht nun $|f|$ aus?
Naja, es gilt:
[mm] $|f|:\IR \to \IR$, $|f|(x)\stackrel{nach\;Def.\;von\;|f|}{=}|f(x)|\stackrel{nach\;Def.\;von\;f}{=}|x|$ $\forall [/mm] x [mm] \in \IR$. [/mm]
Auf [mm] $[0,\;\infty[$ [/mm] sind also die Graphen von $f$ und $|f|$ identisch, auf [m]]-\infty,\;0[[/m] entsteht der Graph von $|f|$ durch Spiegelung des Graphen von $f$ an der $x$-Achse im kartesischen Koordinatensystem!

Weiteres Beispiel:
[mm] $D=[-2,\;2] \subset \IR$, [/mm] $f: [mm] [-2,\;2] \to \IR$ [/mm] mit [mm] $f(x)=x^3$. [/mm]
Dann gilt:
[mm] $|f|:D=[-2,\;2] \to \IR$, $|f|(x)\stackrel{nach\;Def.\;von\;|f|}{=}|f(x)|\stackrel{nach\;Def.\;von\;f}{=}\left|x^3\right|$ $\forall [/mm] x [mm] \in D=[-2,\;2]$ [/mm]

Zeichne nun mal den Graphen von (der zuletzt genannten Funktion) $f$ und zeichne danach mal den Graphen von $|f|$...

Nun aber zu deiner Aufgabe (wozu da $a [mm] \in [/mm] D$ steht, weiß ich nicht):
Ich nehme einfach an, dass ihr das [mm] $\varepsilon-\delta$-Kriterium [/mm] benutzt:
Sei also [m]D \subseteq \IR[/m] und [mm] $f:\;D \to \IR$ [/mm] stetig. Sei [mm] $\varepsilon [/mm] > 0$ gegeben und sei [mm] $x_0 \in [/mm] D$ beliebig, aber fest.
[mm] $(\star)$ [/mm] Da $f$ stetig in [mm] $x_0$ [/mm] ist, existiert ein [mm] $\delta=\delta_{\varepsilon,x_0} [/mm] > 0$, so dass für alle $x [mm] \in [/mm] D$ mit [mm] $|x-x_0|<\delta$ [/mm] gilt: [mm] $|f(x)-f(x_0)|<\varepsilon$. [/mm]

Nun gibt es eine Ungleichung, die man leicht mithilfe der Dreiecksungleichung beweisen kann.
Es gilt für alle $r,s [mm] \in \IR$: [/mm]
[mm] $(\star_2)$ $|\;|r|-|s|\;|\le [/mm] |r-s|$.

Dann folgt für alle $x [mm] \in [/mm] D$ mit [mm] $|x-x_0|< \delta$ [/mm] (das ist das [mm] $\delta$ [/mm] aus [mm] $(\star)$) [/mm] auch für die Funktion $|f|$:
[mm]|\;|f|(x)-|f|(x_0)\;|\stackrel{nach\;Def.\;von\;|f|}{=}|\;|f(x)|-|f(x_0)|\;| \stackrel{(\star_2)}{\le}|f(x)-f(x_0)|\stackrel{(\star)}{<}\varepsilon[/mm].

Also ist auch $|f|$ stetig in [mm] $x_0 \in [/mm] D$. Da [mm] $x_0 \in [/mm] D$ beliebig war, ist auch $|f|$ stetig auf $D$.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de