www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - stetigkeit und Integration
stetigkeit und Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit und Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Sa 10.05.2014
Autor: LinaWeber

Aufgabe
Sei [mm] f:[a,b]-\IR [/mm] stetig, man zeige, dass es ein [mm] \epsilon \in [/mm] [a,b] gibt mit  [mm] \integral_{a}^{b}{f dx}= f(\epsilon) [/mm] * (b-a)


Hey
leider weiß ich bei dieser Aufgabe nicht so ganz weiter. Ich habe versucht mir die Aufgabe zu verbildlichen. Leider hilft mir auch dies nicht so viel. Aus der Stetigkeit folgt ja, dass die Funktion riemann integrierbar ist, was so viel bedeutet, dass die Grenzwerte der Ober und Untersummen gleich sind (dies hilft mir aber hier ja nicht so wirklich weiter. Außerdem folgt aus der Stetigkeit, dass ein Epsilon existiert mit [mm] |f(x)-f(x_0)| [/mm] so...aber wie kann ich dies nun mit dem Integral verbinden?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Liebe Grüße :-)

        
Bezug
stetigkeit und Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 10.05.2014
Autor: Diophant

Hallo,

da muss dir ein Fehler beim Abtippen unterlaufen sein, und zwar ergibt das hier:

> ...dass es ein [mm]\epsilon \in[/mm] [a,b] gibt... mit [mm]\integral_{a}^{b}{f dx}= \epsilon[/mm] * (b-a)

für mich keinerlei Sinn. Sicher dass das nicht

[mm] \epsilon\in{f([a;b])} [/mm]

oder irgendwie sinngemäß heißt? Für diesen Fall würde es einfach um die Existenz des Mittelwertes einer Funktion gehen.

Irgendwie scheint es bei deinen ganzen Fragen Missverständnisse zu geben, weil sich in die Aufgabenstellungen zu viele Fehler eingeschlichen haben.

Gruß, Diophant

Bezug
                
Bezug
stetigkeit und Integration: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:47 Sa 10.05.2014
Autor: LinaWeber

Hey
es tut mir leid. ich bin neu hier und habe noch einige Schwierigkeiten mit der Latexx Schreibweise. Ich habe die Aufgabenstellung korrigiert. Macht diese nun Sinn?

Ps:
Ich verstehe. Es geht hier um das Korollar des Mittelwertsatzes. Diesen habend wir allerdings noch nicht bewiesen. Daher muss ich diesen wahrscheinlich erst beweisen, richtig? oder gibt es einen einfacheren Weg nur dieses Korollar zu beweisen?

Bezug
                        
Bezug
stetigkeit und Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 10.05.2014
Autor: hippias

Du koenntest es so versuchen: Schaetze zuerst das Integral mit Hilfe von [mm] $\inf [/mm] f$ und [mm] $\sup [/mm] f$ ab. Da $f$ stetig ist, kannst Du den Zwischenwertsatz dergestalt anwenden, dass $f$ jeden Wert zwischen seinem Minimum und Maximum annimmt. Dies liefert dir einen passendes [mm] $\epsilon$, [/mm] um den Integralwert zu erhalten.

Bezug
        
Bezug
stetigkeit und Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Sa 10.05.2014
Autor: fred97


> Sei [mm]f:[a,b]-\IR[/mm] stetig, man zeige, dass es ein [mm]\epsilon \in[/mm]
> [a,b] gibt mit  [mm]\integral_{a}^{b}{f dx}= f(\epsilon)[/mm] *
> (b-a)
>  
> Hey
>  leider weiß ich bei dieser Aufgabe nicht so ganz weiter.
> Ich habe versucht mir die Aufgabe zu verbildlichen. Leider
> hilft mir auch dies nicht so viel. Aus der Stetigkeit folgt
> ja, dass die Funktion riemann integrierbar ist, was so viel
> bedeutet, dass die Grenzwerte der Ober und Untersummen
> gleich sind (dies hilft mir aber hier ja nicht so wirklich
> weiter. Außerdem folgt aus der Stetigkeit, dass ein
> Epsilon existiert mit [mm]|f(x)-f(x_0)|[/mm] so...aber wie kann ich
> dies nun mit dem Integral verbinden?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Liebe Grüße :-)


Definiere [mm] F(x):=\integral_{a}^{x}{f(t) dt} [/mm] und wende auf F den Mittelwertsatz der Differentialrechnung an.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de