www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - stochastik, kombinatorik
stochastik, kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastik, kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Mo 05.11.2007
Autor: Isa87

Aufgabe
Beim Fußballtoto müssen in 11 Reihen jeweils entweder 0(unentschieden)  oder 1 ( Sieg des Platzvereinds) oder 2 (Sieg des Gastvereins) angekreuzt werden.

Betrachte alle Spielausgänge als gleichwahrscheinlich.
Berechne die Wahrscheinlichkeit für einen Gewinn  im ersten Ragng (11 Richtige), im zweiten Rang (10 Richtige).

Wie viele verschiedene Tips gibt es überhaupt?
Wie viele vollständig falsche Tips gibt es?

Hi!

Hier versteh ich leider noch nich ma die fragestellung was ist mit rang gemeint?
und meine Wahrscheinlichkeit beträgt doch 1/3 für jedes Ergebnis. Nur was hat diese Aufgabe dann mit Kombinatorik zu tun,wenn ich die Wahrscheinlichkeit ausrechnen soll?

Ich würde mir über eine Anwort sehr freuen

Isa

        
Bezug
stochastik, kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Di 06.11.2007
Autor: Somebody


> Beim Fußballtoto müssen in 11 Reihen jeweils entweder
> 0(unentschieden)  oder 1 ( Sieg des Platzvereinds) oder 2
> (Sieg des Gastvereins) angekreuzt werden.
>  
> Betrachte alle Spielausgänge als gleichwahrscheinlich.
>  Berechne die Wahrscheinlichkeit für einen Gewinn  im
> ersten Ragng (11 Richtige), im zweiten Rang (10 Richtige).
>  
> Wie viele verschiedene Tips gibt es überhaupt?
>  Wie viele vollständig falsche Tips gibt es?
>  Hi!
>  
> Hier versteh ich leider noch nich ma die fragestellung was
> ist mit rang gemeint?

Mach Dir keine unnötigen Sorgen über diese Wortwahl: wesentlich ist nur die Frage, mit welcher Wahrscheinlichkeit 11 bzw. 10 richtige Ergebnisse der 11 auf dem Totoschein aufgeführen Spiele getippt werden.
(Die Rangfolge von Gewinnen wird einfach aufgrund der Höhe der Gewinnausschüttung für diese Art von Gewinn gebildet.)

>  und meine Wahrscheinlichkeit beträgt doch 1/3 für jedes
> Ergebnis.

Eines einzelnen der 11 Spiele: ja - sofern man annimmt, dass alle 3 möglichen Ausgänge gleich wahrscheinlich sind (was in der Praxis, bei Fussballspielen, kaum der Fall sein dürfte).

> Nur was hat diese Aufgabe dann mit Kombinatorik
> zu tun,wenn ich die Wahrscheinlichkeit ausrechnen soll?

Wenn ein Zufallsexperiment die Eigenschaft hat, dass alle seine möglichen Ergebnisse (Ausfälle) gleich wahrscheinlich sind (sogenanntes "Laplace-Experiment"), dann reduziert sich Wahrscheinlichkeitsrechnung in der Tat auf Kombinatorik, denn dann ist die Wahrscheinlichkeit, dass ein gewisses Ereignis $E$ (eine Menge von möglichen Ergebnissen des Zufallsexperiments) eintritt, gleich
[mm]\mathrm{P}(E)=\frac{|E|}{|\Omega|}=\frac{\text{"günstige Fälle"}}{\text{"mögliche Fälle"}}[/mm]


Wobei [mm] $\Omega$ [/mm] die Menge aller möglichen Ergebnisse des Zufallsexperiments sei.

Um auf Deine Fragen zurückzukommen: wir gehen also davon aus, dass jedes Ergebnis eines der 11 Spiele (unabhängig von den Ergebnissen der anderen Spiele) gleich wahrscheinlich ist. Es gibt also insgesamt [mm] $3^{11}$ [/mm] verschiedene mögliche Ergebnisse insgesamt ("Produktsatz der Kombinatorik"). Also gilt:

[mm] [center]$\mathrm{P}(\text{alle 11 richtig})=\frac{1}{3^{11}}$[/center] [/mm]

Nur 10 von 11 Spielen kann man auf [mm] $11\cdot [/mm] 2$ verschiedene Arten richtig tippen: denn das eine falsch getippte Spiel kann auf 11 verschiedene Arten aus den 11 Spielen ausgewählt werden und dieses Spiel kann noch auf zwei verschiedene Arten falsch getippt worden sein. Dies ergibt:

[mm] [center]$\mathrm{P}(\text{genau 10 richtig getippt})=\frac{11\cdot 2}{3^{11}}=\frac{22}{3^{11}}$[/center] [/mm]

Dass es [mm] $3^{11}$ [/mm] verschiedene Tips uberhaupt gibt, haben wir weiter oben schon verwendet.

Werden alle 11 Spiele falsch getippt, so können diese 11 Spiele aber noch unabhängig voneinander auf 2 Arten falsch getippt werden. Daraus ergibt sich, dass es [mm] $2^{11}$ [/mm] verschiedene, vollständig falsche Tips gibt.
Die Wahrscheinlichkeit, einen vollständig falschen Tip ausgefüllt zu haben, ist demnach

[mm] [center]$\mathrm{P}(\text{vollständig falsch})=\frac{2^{11}}{3^{11}}=\left(\tfrac{2}{3}\right)^{11}$[/center] [/mm]


Bezug
                
Bezug
stochastik, kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Do 08.11.2007
Autor: Isa87

Hey!

Danke dass du mir die Aufgabe so ausführlich erklärt hast, hat mir echt weitergeholfen, ansonsten wär ich leicht aufgeschmissen gewesen. Konnte auch prima alles nachvollziehen und wieder auf andere Aufgaben anwenden.

Liebe grüße
Isa

PS: Hätte auch schon früher geantwortet, aber die Seite war überlastet und ich konnte mich net einloggen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de