www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - stochastische unabhängigkeit
stochastische unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastische unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 So 28.06.2009
Autor: nullinstochastik

Aufgabe
Geben Sie auf dem Wahrscheinlichkeitsraum für das dreimalige Werfen einer fairen Münze je zwei Zufallsgrößen an, die

(a) stochastisch unabhängig,
(b) unkorreliert, aber nicht stochastisch unabhängig,
(c) nicht unkorreliert sind.

Begründen Sie jeweils Ihre Antworten.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

omega : [mm] {k,z}^3 [/mm]
|omega| = [mm] 2^3 [/mm] = 8

P(A) * P(B) = P(A n B)

Was sind die Zufallsgrößen? Muss ich mir da einfach was ausdenken wie z.B. In Zwei aufeinanderfolgenden Würfen fiel k? p = 3/8 und es fiel mindestens einmal z p= 7/8

3/8 * 7/8 = 21/46  21/64 = 3/8 nicht stochastisch unabhängig

und so dann alles mögliche durch probieren oder gibt es da noch ne andere Möglichkeit?

Und was ist unkorreliert?



        
Bezug
stochastische unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 28.06.2009
Autor: vivo

Hallo,

es sollen keine Ereignisse angegeben werden sondern Zufallsgrößen (Zufallsvariablen) ...

Die Korrelation beschreibt den linearen Zusammenhang von zwischen den Zufallsvariablen.

gruß

Bezug
                
Bezug
stochastische unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 29.06.2009
Autor: nullinstochastik

hey also z.b. x oder y?

also für die stochastische unabhängigkeit wäre das P(x) * P(y) = P(x n y)

das kann aber doch nicht alles sein für a)?!

ich verstehe immer noch nicht was korreliert und unkorreliert ist?

Bezug
                        
Bezug
stochastische unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 30.06.2009
Autor: vivo

Hallo,

hab ich doch geschrieben:

"Die Korrelation beschreibt den linearen Zusammenhang von zwischen den Zufallsvariablen."

Alles weitere kannst du in unzähligen Quellen nachlesen. Da in deinem Profil steht, dass du Mathe Student im Hauptstudium bist, ist dass denke ich auch nicht zuviel verlangt.

Wenn du anschließend fragen dazu hast, werden dir hier sicher einige leute weiterhelfen. Aber ich bezweifle, dass dir jemand ausführlich erklärt was korrelation heißt, zumal du dir dass wirklich selbst aneignen solltest.

gruß



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de