www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - stretigkeit
stretigkeit < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stretigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:57 Sa 02.09.2006
Autor: hindorfconan

Aufgabe
untersuche folgende funktionen auf ihre stetigkeit in punkt a!

1)
x³-2x-5   , in a=2

2)
f(x):= x² * sgn (x), in a=0

3)
f(x):= x + sgn(x), in a=0

[mm] 4)f(x)=\begin{cases} ,\wurzel{x} & \mbox{für } x \mbox{ größer gleich 4} \\ ,\bruch{1}{4}x+1 & \mbox{für } x \mbox{ kleiner 4} \end{cases}, [/mm] in punkt a=4


hallo an alle,

also die aufgabe sagt ja, das ich die funktionen auf ihre stetigkeit an einer bestimmten stelle unterscuchen soll.

dies habe ich bei der 1. gemacht. ich habe zuerst die 2 in die funktion eingesetzt, sodass ich f(2) berechnet habe. rausbekommen habe ich -1.
daraufhin habe ich ausgegangen vom punkt 2 die umgebung untersucht, also lim h--> 0 untersucht. einmal 2+h, einmal 2-h. hier habe ich jeweils 7 rausbekommen. damit die funktion aber stetig wird, müsste ich ja -1 haben müssen, oder?????

bei den signum funktionen, weiss ich leider nicht bescheid. würde mich hier wirklich freuen, wenn mir es jemand erklären würde.
auch bei der partiellen funktion sehe ich schwarz.

wenn mir jemand helfen kann, möchte, schoin im voraus danke. natürlich auch an alle anderen.......:)

lg

        
Bezug
stretigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 05:28 So 03.09.2006
Autor: unixfan

1)
Jedes Polynom ist an jeder Stelle seines Definitionsbereiches stetig, so auch dieses hier an der Stelle 2. Bitte schreib mal genauer, wie Du bei rechts- und linksseitigem Grenzwert nicht auf -1 kommst.

2)+3)
sgn(x) = [mm] \begin{cases} 1, & \mbox{falls } x>0 \\ 0, & \mbox{falls } x=0 \\ -1, & \mbox{falls } x<0 \end{cases} [/mm]
Das ist im Prinzip erstmal alles, was sgn(x) aussagt.
sgn(x) selbst ist trivialerweise an der Stelle 0 nicht stetig, [mm] f(x)=x^2 \cdot [/mm] sgn(x) aber schon, da f(0)=0 und der Grenzwert von rechts und der von links auch.

g(x)=x+sgn(x) ist an der Stelle 0 nicht stetig, da g(0) = 0, aber [mm] \limes_{x \nearrow 0} [/mm] g(x) = -1 und [mm] \limes_{x \searrow 0} [/mm] g(x) = 1.

Du musst dir bei den abschnittsweise definierten Funktionen im Prinzip nur überlegen, welchen der Fälle Du gerade behandelst.

4)
f(4) = [mm] \sqrt{4} [/mm] = 2
[mm] \limes_{x \searrow 4} [/mm] f(x) = [mm] \sqrt{4} [/mm] = 2
[mm] \limes_{x \nearrow 4} [/mm] f(x) = 1/4*4+1 = 2
=> stetig an der Stelle 4



Bezug
        
Bezug
stretigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 04.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de