www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - substitution 2
substitution 2 < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

substitution 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 So 26.12.2010
Autor: Hummel89

Aufgabe
y' = [mm] \bruch{x^{2}+xy+y^{2}}{x^{2}} [/mm]

Hallo, ich hänge mal wieder bei einer Aufgabe mit Trennung der Variablen und Substitution.

Nun wusste ich hier erstmal gar nicht, was ich substuieren sollte. Ich hab mit dem Zähler angefangen, aber das hat zu nichts geführt, also hab ich das Ganze erstmal umgeformt:

y' = [mm] \bruch{x^{2}+xy+y^{2}}{x^{2}} [/mm]
[mm] \gdw [/mm] y' = 1 + [mm] \bruch{y}{x} [/mm] + [mm] \bruch{y^{2}}{x^{2}} [/mm]

Und hier bot sich ja nun an den Bruch [mm] \bruch{y}{x} [/mm] zu substituieren, also habe ich geschrieben [mm] z=\bruch{y}{x} [/mm]

[mm] \gdw [/mm] y' = [mm] z^{2} [/mm] + z + 1

Dann habe ich noch z abgeleitet und bin auf Folgendes gekommen:

z'= [mm] \bruch{y-xy'}{y²} [/mm]

[mm] \gdw [/mm] y' = -z'yz+z

Und jetzt habe ich überall rumprobiert, aber ich kann irgendwie nichts einsetzen, dass ich irgendwo nur noch zwei Variablen hab. Ich wäre danbkar, webb mir jemand einen kleinen Tipp gibt.

        
Bezug
substitution 2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 So 26.12.2010
Autor: MathePower

Hallo Hummel89,

> y' = [mm]\bruch{x^{2}+xy+y^{2}}{x^{2}}[/mm]
>  Hallo, ich hänge mal wieder bei einer Aufgabe mit
> Trennung der Variablen und Substitution.
>  
> Nun wusste ich hier erstmal gar nicht, was ich substuieren
> sollte. Ich hab mit dem Zähler angefangen, aber das hat zu
> nichts geführt, also hab ich das Ganze erstmal umgeformt:
>  
> y' = [mm]\bruch{x^{2}+xy+y^{2}}{x^{2}}[/mm]
>  [mm]\gdw[/mm] y' = 1 + [mm]\bruch{y}{x}[/mm] + [mm]\bruch{y^{2}}{x^{2}}[/mm]
>  
> Und hier bot sich ja nun an den Bruch [mm]\bruch{y}{x}[/mm] zu
> substituieren, also habe ich geschrieben [mm]z=\bruch{y}{x}[/mm]
>  
> [mm]\gdw[/mm] y' = [mm]z^{2}[/mm] + z + 1
>  
> Dann habe ich noch z abgeleitet und bin auf Folgendes
> gekommen:
>  
> z'= [mm]\bruch{y-xy'}{y²}[/mm]
>  
> [mm]\gdw[/mm] y' = -z'yz+z
>  
> Und jetzt habe ich überall rumprobiert, aber ich kann
> irgendwie nichts einsetzen, dass ich irgendwo nur noch zwei
> Variablen hab. Ich wäre danbkar, webb mir jemand einen
> kleinen Tipp gibt.


Es ist doch [mm]y=z*x[/mm] und damit [mm]y'=z'*x+z[/mm]


Gruss
MathePower

Bezug
        
Bezug
substitution 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 So 26.12.2010
Autor: Hummel89

Vielen Dank, jetzt konnte ich die Aufgabe lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de