www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - supM < inf => supM - e < x
supM < inf => supM - e < x < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Sa 24.10.2009
Autor: ZodiacXP

Aufgabe
Zeige [mm] $\forall \varepsilon [/mm] > 0 [mm] \exists [/mm] x [mm] \in [/mm] M [mm] \subset \IR: supM-\varepsilon [/mm] < x$, wenn $sup M < [mm] \infty$ [/mm]


(sup ist der superior)

Meine Annahme:

$sup M < [mm] \infty \Rightarrow [/mm] sup M = a [mm] \in \IR$ [/mm]
Sei $x := a - [mm] \varepsilon [/mm] + 1$ so gilt:
[mm] $supM-\varepsilon [/mm] < x [mm] \gdw a-\varepsilon [/mm] < a - [mm] \varepsilon [/mm] + 1 [mm] \gdw [/mm] 0 < 1$ womit das x gefunden wäre.

Ist dem wirklich so oder ist das kein Beweis?

        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Sa 24.10.2009
Autor: rainerS

Hallo!

> Zeige [mm]\forall \varepsilon > 0 \exists x \in M \subset \IR: supM-\varepsilon < x[/mm],
> wenn [mm]sup M < \infty[/mm]
>  
> (sup ist der superior)

Supremum.

>  
> Meine Annahme:
>  
> [mm]sup M < \infty \Rightarrow sup M = a \in \IR[/mm]
>  Sei [mm]x := a - \varepsilon + 1[/mm]
> so gilt:
>  [mm]supM-\varepsilon < x \gdw a-\varepsilon < a - \varepsilon + 1 \gdw 0 < 1[/mm]
> womit das x gefunden wäre.
>  
> Ist dem wirklich so oder ist das kein Beweis?

Das stimmt so nicht, denn es ist nicht gezeigt, dass [mm] $x\in [/mm] M$ ist.

Gegenbeispiel:

[mm] M = (1/2,1) [/mm]

also ein offenes Intervall der Länge 1/2. Es ist offensichtlich [mm] $\sup [/mm] M=1$. In deiner Argumentation wäre also [mm] $x=-\varepsilon \notin [/mm] M$. Du darfst x nicht frei wählen, sondern musst die Definition des Supremums als kleinste obere Schranke von M benutzen.

Viele Grüße
   Rainer


Bezug
                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Sa 24.10.2009
Autor: ZodiacXP

Danke. Wie sollte man mit der Definition argumentieren?

sup M < [mm] $\infty \Rightarrow$ [/mm] Es gibt eine obere Schranke
Sei x genau diese kleinste obere Schranke folgt
$x - [mm] \varepsilon [/mm] < x$

(Erscheint mir ziemlich komisch.)

Bezug
                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Sa 24.10.2009
Autor: rainerS

Hallo!

> Danke. Wie sollte man mit der Definition argumentieren?
>  
> sup M < [mm]\infty \Rightarrow[/mm] Es gibt eine obere Schranke
>  Sei x genau diese kleinste obere Schranke folgt
>  [mm]x - \varepsilon < x[/mm]

Das sollst du zeigen. Mach einen Widerspruchsbeweis! Nimm an, es gebe kein solches x. Also:

Annnahme: Für ein [mm] $\varepsilon [/mm] >0$ gilt: es gibt kein [mm] $x\in [/mm] M$ mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Mit anderen Worten: alle [mm] $x\in [/mm] M$ sind [mm] $\le \sup [/mm] M [mm] -\varepsilon$. [/mm] Kann dann [mm] $\sup [/mm] M$ die kleinste obere Schranke sein?

Viele Grüße
  Rainer

Bezug
                                
Bezug
supM < inf => supM - e < x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Sa 24.10.2009
Autor: ZodiacXP

Ok stimmt. Das kann garnicht für alle x gelten, da die Menge dann nicht nach oben beschränkt wäre. Finds schwer die Gedanken formal aufzuschreiben.

Sei für alle x: $x [mm] \le [/mm] sup M - [mm] \varepsilon \gdw x+\varepsilon \le [/mm] sup M$, so muss für beliebige [mm] $\varepsilon \in \IR$ [/mm] $supM = [mm] \infty$ [/mm] was ein Widerspruch zur Annahme ist.

Bezug
                                        
Bezug
supM < inf => supM - e < x: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Sa 24.10.2009
Autor: rainerS

Hallo!

> Ok stimmt. Das kann garnicht für alle x gelten, da die
> Menge dann nicht nach oben beschränkt wäre. Finds schwer
> die Gedanken formal aufzuschreiben.
>  
> Sei für alle x: [mm]x \le sup M - \varepsilon \gdw x+\varepsilon \le sup M[/mm],
> so muss für beliebige [mm]\varepsilon \in \IR[/mm] [mm]supM = \infty[/mm]
> was ein Widerspruch zur Annahme ist.

Das stimmt nicht ganz, denn die Annahme war (als Negation der Voraussetzung), dass es ein solches [mm] $\varepsilon$ [/mm] gibt, für das es kein [mm] $x\in [/mm] M$ gibt mit $x > [mm] \sup [/mm] M [mm] -\varepsilon$. [/mm] Dann sind alle $x [mm] \le \sup [/mm] M [mm] -\varepsilon$. [/mm] Damit ist [mm] $\sup M-\varepsilon [/mm] < [mm] \sup [/mm] M$ eine obere Schranke. Das ist ein Widerspruch zur Voraussetzung, dass [mm] $\sup [/mm] M$ die kleinste obere Schranke ist.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
supM < inf => supM - e < x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:57 Sa 24.10.2009
Autor: ZodiacXP

Hammer. Wieso kann mein Kopf so etwas offensichtliches nicht einfach ausspucken? Beschämend.

Jetzt sehe ich wie die Definition verwendet wurde! Es ist furchtbar logisch, aber wie gesagt: Formal hink ich hinterher.

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de