www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - sup, max, inf, min
sup, max, inf, min < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sup, max, inf, min: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 23.11.2005
Autor: alicante1986

Hallo,
Sei A:=( [mm] \bruch{ n^{2}}{2^{n}} [/mm] : n [mm] \in \IN [/mm] ). Bestimmen Sie das Supremum, das Infimum sowie das Minimum und das Maximum von A, soweit diese existieren.

Hinweis: Es gibt ein [mm] n_{0}, [/mm] so dass die Folge  ( [mm] \bruch{ n^{2}}{2^{n}}_{n \ge n_{0}} [/mm] ) monoton ist.

Kann mir da einer helfen???

        
Bezug
sup, max, inf, min: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Do 24.11.2005
Autor: MatthiasKr

Hallo alicante,

was hast du denn bisher zur lösung der aufgabe versucht? So schwer ist sie ja eigentlich nicht.

Mein Tip:schreibe dir mal die ersten (zb. zehn) folgeglieder hin, dann solltest du schon erkennen, wie die lösung in etwa aussieht. das musst du dann 'nur' noch formal begründen.

VG
Matthias

Bezug
        
Bezug
sup, max, inf, min: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:29 Do 24.11.2005
Autor: fvs

Also meines erachtens ist die unter dem Bruch stehende Zahl ab n=4 immer größer als der Zähler. Deshalb glaube ich, dass das ganze gegen null läuft, aber was hat das Suprmum und das Maximum und das Infimum und das Minimum damit zu tun???

Bezug
                
Bezug
sup, max, inf, min: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 Do 24.11.2005
Autor: angela.h.b.


> Also meines erachtens ist die unter dem Bruch stehende Zahl
> ab n=4 immer größer als der Zähler. Deshalb glaube ich,
> dass das ganze gegen null läuft, aber was hat das Suprmum
> und das Maximum und das Infimum und das Minimum damit zu
> tun???

Hallo,

die Folgenglieder sind ja gerade die Elemente der zu untersuchenden Menge.

Gruß v. Angela



Bezug
                        
Bezug
sup, max, inf, min: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:21 Do 24.11.2005
Autor: alicante1986


> Also meines erachtens ist die unter dem Bruch stehende Zahl
> ab n=4 immer größer als der Zähler. Deshalb glaube ich,
> dass das ganze gegen null läuft, aber was hat das Suprmum
> und das Maximum und das Infimum und das Minimum damit zu
> tun???


Kann mir denn keiner Helfen??? Also ich stimme fvs zu und weiß nun auch nicht mehr weiter...

Bezug
                                
Bezug
sup, max, inf, min: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:12 Do 24.11.2005
Autor: Roadrunner

Hallo alicante!


Die oben genannte Abschätzung [mm] $n^2 [/mm] \ < \ [mm] 2^n$ [/mm] gilt sogar schon ab [mm] $n_0 [/mm] \ [mm] \ge [/mm] \ 3$.


Daher benötigen wir hier die ersten drei Folgenglieder, um hier unser Maximum (und damit auch Supremum) ablesen zu können.

Denn ab dem 3. Folgenglied an fällt die Folge monoton ab, so dass alle nachfolgenden Glieder immer kleiner werden.


Das Infinum ist in unserem Falle der Grenzwert der Folge. Wird dieser Grenzwert je erreicht? Gibt es also ein Minimum?


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de