www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - surjektiv+bijektiv+injektiv
surjektiv+bijektiv+injektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv+bijektiv+injektiv: Funktion+Mengen
Status: (Frage) beantwortet Status 
Datum: 01:08 So 19.12.2004
Autor: mimi94

Hallo Leute!
Ich muss diese 2 aufgaben lösen. Bei beiden müssen wir die Aussage beweisen oder mit einem beispiel widerlegen.
Ich weiß wie man die 3 begriffe definiert und hab auch keine probleme damit.
Probleme hab ich mit der Multiplikation der Funktionen und ihren Auswirkungen dann auf dieses (surjektv,...).
Funktionen f, g mit den Eigenschaften könnt ich finden, wüsst aber nicht wie es mit den Eigenschaften weiter geht, wenn es Mult. wird und überhaupt wie die 2 multipliziert werden.
Vielleicht könnte jemand von jeder Aufgabe 2 Teile rausfischen, wo man 1 mal beweisen und einmal gegenbeispiel nennen muss und mir diese jeweils erklären. Da die Aufgaben ähnlich sind, denke ich, dass ich den Rest dann selber lösen kann.
g*f:A [mm] \toC [/mm]

1.
Seien A, B, C nichtleere Mengen und f : A → B, g : B → C Funktionen.
(a) Falls f und g injektiv sind, so ist auch g ◦ f injektiv.
(b) Falls g ◦ f injektiv ist, so sind auch f und g injektiv.
(c) Falls f und g surjektiv sind, so ist auch g ◦ f surjektiv.
(d) Falls g ◦ f surjektiv ist, so sind auch f und g surjektiv.
(e) Falls f und g bijektiv sind, so ist auch g ◦ f bijektiv.
(f) Falls g ◦ f bijektiv ist, so sind auch f und g bijektiv.

2.Seien A, B, C nichtleere Mengen und f : A → B, g : B → C Funktionen.
(a) Falls g ◦ f injektiv ist, so ist f injektiv.
(b) Falls g ◦ f injektiv ist, so ist g injektiv.
(c) Falls g ◦ f surjektiv ist, so ist g surjektiv.
(d) Falls g ◦ f surjektiv ist, so ist f surjektiv.
(e) Falls g ◦ f bijektiv ist, so ist f bijektiv.
(f) Falls g ◦ f bijektiv ist, so ist g bijektiv.

Würde mich sehr über die Hilfe freuen. Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
surjektiv+bijektiv+injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 So 19.12.2004
Autor: mimi94

Wenn ihr mir bei der Aufgabe nicht helfen könnt, vielleicht könnt ihr mir bloß zeigen wie Funktion multipliziert werden.

Bezug
                
Bezug
surjektiv+bijektiv+injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:58 Mo 20.12.2004
Autor: Marc

Hallo mimi94,

> Wenn ihr mir bei der Aufgabe nicht helfen könnt, vielleicht
> könnt ihr mir bloß zeigen wie Funktion multipliziert
> werden.

habe keine Zeit, aber dieses Missverständnis wollte ich noch aufklären.

Mit [mm] $f\circ [/mm] g$ ist nicht die Multiplikation zweier Abbildungen gemeint (die ist ja unter Umständen gar nicht definiert in den einzelnen Räumen A bzw. B bzw. C), sondern die Hintereinanderausführung der beiden Abbildungen.

Zum Beispiel: [mm] f(x)=x^2 [/mm] und g(x)=x+1

Dann ist [mm] $(f\circ g)(x)=f(g(x))=(x+1)^2$ [/mm] und
[mm] $(g\circ f)(x)=g(f(x))=x^2+1$ [/mm]

Das sind nur zwei Beispiele, im allgemeinen kann man die Hinteranderausführung nicht derart vertauschen.

Viele Grüße,
Marc

Bezug
        
Bezug
surjektiv+bijektiv+injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Di 21.12.2004
Autor: Hexe

So da ich nicht weiss ob dir Der Kommentar schon gereicht hat und ich grad zeit habe antworte ich mal.
Also das mit der Hintereinanderausführung ist hoffentlich klar Vorraussetzung für [mm] g\circ [/mm] f ist natürlich, dass f: A ->B und g: B->C, dass also Bildraum von f Urraum von g ist.
Nun zu den Aufgaben.
1c) z.z. [mm] g\circ [/mm] f surjectiv, also [mm] \forall c\in [/mm] C [mm] \exists a\in [/mm] A mit g(f(a))=c
Beweis
Sei [mm] c\in [/mm] C dann gibt es wegen g surjektiv ein [mm] b\in [/mm] B mit g(b)=c und wegen f surjektiv gibt es zu b ein a [mm] \in [/mm] A mit f(a)=b , also ist g(f(a))=g(b)=c für jedes c möglich  

1d) Sei A= [mm] \IR [/mm] =B und [mm] C=\IR^{+} [/mm] Sei [mm] f(x)=x^2 [/mm] und g =id  Dann ist  [mm] g\circ [/mm] f : A->C surjektiv aber nicht f :A->B  Dies geht auch als Antwort zu 2d

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de