www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - surjektiv injektiv?!
surjektiv injektiv?! < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektiv injektiv?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Mi 02.11.2005
Autor: denwag

hi, hab mal wieder einen lernanschub nötig, weiß nämlich nicht wie ich an die aufgabe ran gehen muss. vielleicht kann mir ja jemand von euch helfen.

Es seien ( [mm] G_{1}, [/mm] +_{1}) und ( [mm] G_{2}, [/mm] +_{2}) zwei Gruppen. Zeigen Sie, dass die Menge G =   [mm] G_{1} [/mm] ×  [mm] G_{2} [/mm] versehen mit der Operation

( [mm] x_{1}, x_{2}) [/mm] + ( [mm] y_{1}, y_{2}) [/mm] = ( [mm] x_{1} [/mm]  +_{1}  [mm] y_{1}, x_{2} [/mm]  +_{2}  [mm] y_{2}) [/mm]

wieder eine Gruppe ist. Man zeige weiterhin, dass G genau dann kommutativ ist, wenn die beiden Gruppen  [mm] G_{1} [/mm] und  [mm] G_{2} [/mm] kommutativ sind.

Vielen Dank für die Hilfe.

        
Bezug
surjektiv injektiv?!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Mi 02.11.2005
Autor: banachella

Hallo!

Hier musst du die Gruppenaxiome überprüfen.
Zum Beispiel:

Existenz eines neutralen Elements:
Seien [mm] $0_1\in G_1,\ 0_2\in G_2$ [/mm] jeweils das neutrale Element von [mm] $G_1$ [/mm] bzw. [mm] $G_2$. [/mm] Dann gilt für alle [mm] $(x,y)\in G_1\times G_2$: [/mm]
[mm] $(x,y)+(0_1,0_2)=(x+0_1,y+0_2)=(x,y)$ [/mm] sowie [mm] $(0_1,0_2)(x,y)=(0_1+x,0_2+y)=(x,y)$. [/mm]
Also ist [mm] $(0_1,0_2)$ [/mm] das neutrale Element von [mm] $G_1\times G_2$. [/mm]

Ist dir jetzt klar, wie du an die Aufgabe rangehen musst?

Gruß, banachella

Bezug
                
Bezug
surjektiv injektiv?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Mi 02.11.2005
Autor: denwag

danke schon mal für den ansatz.

jetzt muss ich noch das inverse element und das assoziativgesetz zeigen, richtig?
das assoziativgesetz lautet ja (a*b)*c=a*(b*c).
wie soll ich das zeigen ich hab doch nur 2 variablen.

bitte nochmals um hilfe.
bitte


Bezug
                        
Bezug
surjektiv injektiv?!: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Do 03.11.2005
Autor: Stefan

Hallo!

Ich glaube du verwechselst da was. Wie meinst du das: Nur zwei Variablen? [haee]

Es seien [mm] $(x_1,x_2)$, $(y_1,y_2)$ [/mm] und [mm] $(z_1,z_2)$ [/mm] aus [mm] $G_1 \times G_2$ [/mm] beliebig gewählt. Dann gilt, da das Assoziativgesetz in [mm] $G_1$ [/mm] und [mm] $G_2$ [/mm] gilt:

[mm] $[(x_1,x_2) [/mm] + [mm] (y_1,y_2)] [/mm] + [mm] (z_1,z_2)$ [/mm]

[mm] $=(x_1 [/mm] +_1 [mm] y_1,x_2 [/mm] +_2 [mm] y_2) [/mm] + [mm] (z_1,z_2)$ [/mm]

[mm] $=((x_1 [/mm] +_1 [mm] y_1) [/mm] +_1 [mm] z_1, (x_2 [/mm] +_2 [mm] y_2) [/mm] +_2 [mm] z_2)$ [/mm]

$= [mm] (x_1 [/mm] +_1 [mm] (y_1 [/mm] +_1 [mm] z_1), x_2 [/mm] +_2 [mm] (y_2 [/mm] +_2 [mm] z_2))$ [/mm]

$= [mm] (x_1,x_2) [/mm] + [mm] (y_1 [/mm] +_1 [mm] z_1, y_2 [/mm] +_2 [mm] z_2)$ [/mm]

[mm] $=(x_1,x_2) [/mm] + [mm] [(y_1,y_2) [/mm] + [mm] (z_1,z_2)]$, [/mm]

was zu zeigen war.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de