www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - sym. Bilinearform
sym. Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sym. Bilinearform: pos. definit?
Status: (Frage) beantwortet Status 
Datum: 11:38 So 02.10.2011
Autor: perl

Aufgabe
Sei X = C[a,b], a<B. Zeigen sie, dass die symmetrische Bilinearform

<f,g> = [mm] \integral_{a}^{b}{f(x) g(x) dx}, [/mm] f,g /in C[a,b]

positiv definit ist.

Hallo!

symmetrisch und bilinear? Ja.
--> pos. definit?

Hierzu eine allgemeine Frage: Wieso betrachte ich bei der überprüfung nach pos. def. letztendlich nur <f,f>?? wieso spielt das g keine rolle mehr?

Und: ich habe die Lösung in Form einer /varepsilon - /delta Definition und wollte wissen ob es auch eine andere Lösung ohne /varepsilon - /delta gibt.

Vielen Dank schon einmal!!!

        
Bezug
sym. Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 So 02.10.2011
Autor: hippias


>  
> Hierzu eine allgemeine Frage: Wieso betrachte ich bei der
> überprüfung nach pos. def. letztendlich nur <f,f>?? wieso
> spielt das g keine rolle mehr?

So ist lautet die Definition: Eine sym. Bilinearform heisst Pos. def., wenn $<f,f>>0$ fuer alle [mm] $f\neq [/mm] 0$.

>  
> Und: ich habe die Lösung in Form einer /varepsilon -
> /delta Definition und wollte wissen ob es auch eine andere
> Lösung ohne /varepsilon - /delta gibt.

Das ist gut moeglich...

>  
> Vielen Dank schon einmal!!!


Bezug
                
Bezug
sym. Bilinearform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 So 02.10.2011
Autor: perl


>
> >  

> > Hierzu eine allgemeine Frage: Wieso betrachte ich bei der
> > überprüfung nach pos. def. letztendlich nur <f,f>?? wieso
> > spielt das g keine rolle mehr?
>  
> So ist lautet die Definition: Eine sym. Bilinearform heisst
> Pos. def., wenn [mm]>0[/mm] fuer alle [mm]f\neq 0[/mm].

ja... die definition kenn ich, vielen dank.

> > Und: ich habe die Lösung in Form einer /varepsilon -
> > /delta Definition und wollte wissen ob es auch eine andere
> > Lösung ohne /varepsilon - /delta gibt.
>  Das ist gut moeglich...

das ist keine Antwort.

> > Vielen Dank schon einmal!!!
>  


Bezug
                        
Bezug
sym. Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 So 02.10.2011
Autor: angela.h.b.


> >
> > >  

> > > Hierzu eine allgemeine Frage: Wieso betrachte ich bei der
> > > überprüfung nach pos. def. letztendlich nur <f,f>?? wieso
> > > spielt das g keine rolle mehr?
>  >  
> > So ist lautet die Definition: Eine sym. Bilinearform heisst
> > Pos. def., wenn [mm]>0[/mm] fuer alle [mm]f\neq 0[/mm].
>  
> ja... die definition kenn ich, vielen dank.
>  
> > > Und: ich habe die Lösung in Form einer /varepsilon -
> > > /delta Definition und wollte wissen ob es auch eine andere
> > > Lösung ohne /varepsilon - /delta gibt.
>  >  Das ist gut moeglich...
>  das ist keine Antwort.

Hallo,

nun, eine Antwort war es schon, oder?
Eine vage Antwort auf eine vage gestellte Frage...

Hast Du denn Ideen? Was schwebt Dir vor?

Ich denke, Du solltest die Angelegenheit statt durch die Suche nach Alternativen eher etwas anders angehen und Dich eingehend mit, dem, was hier zu beweisen ist, beschäftigen - jedenfalls dann, wenn Dir der vorliegende Beweis durchs [mm] \varepsilon [/mm] und [mm] \delta [/mm] zu erschreckend ist.

Was ist hier zu zeigen?
Was davon ergibt sich aus wohlbekannten Eigenschaften des Integrals?
Was bleibt also zu zeigen?
Hier wird dann die Stetigkeit von f eine Rolle spielen, und Du wirst einsehen, daß Du kaum umhinkommen wirst, in irgendeiner Weise die Stetigkeit von f im Beweis einzubringen.
Ist Dir denn der Sachverhalt rein anschaulich klar? Wenn ja, dann kannst Du das ja mal formulieren.

Gruß v. Angela






</f,f>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de