www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - sym. bil.form - total isotrop
sym. bil.form - total isotrop < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sym. bil.form - total isotrop: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:23 Mi 11.01.2012
Autor: Schadowmaster

Aufgabe
Sei $V$ ein endlich-dimensionaler reeller Vektorraum, $b: V [mm] \times [/mm] V [mm] \to \IR$ [/mm] eine nicht ausgeartete, symetrische Bilinearform.
Bestimmen Sie die maximale Dimension eines total isotropen Unterraums von $V$ in Abhängigkeit vom Typ $(p,q)$ von $b$.

moin,

Bei obiger Aufgabe hab ich leider grad ein paar Probleme...
Zu aller erst mal hab ich mir folgendes überlegt:
Sei dim$(V) = n [mm] \in \IN$. [/mm]
Dann muss $p+q=n$ gelten, da $b$ sonst ausgeartet wäre.
Ist nun $W$ ein solcher total isotroper Unterraum von $V$, so muss ja ins besondere $b(w,w) = 0$ für alle $w [mm] \in [/mm] W$ gelten.
So spontan würde ich sagen, dass das ein Widerspruch zum Typ ist, denn hat $b$ den Typ $(p,q)$, so gibt es ja einen Unterraum der Dimension $p$, auf dem $b$ positiv definit ist und einen der Dimension $q$, auf dem $b$ negativ definit ist.

Könnte ich aber vielleicht nicht auf der anderen Seite einen Vektor $v$ basteln, sodass $b(v,v) = 0$; etwa als Linearkombination aus den beiden obigen Räumen?

Ich bin da  alles in allem etwas verwirrt und hab leider für keine meiner Vermutungen einen brauchbaren Beweis...

Danke schonmal für Tipps und Hilfe.


lg

Schadow


        
Bezug
sym. bil.form - total isotrop: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:36 Do 12.01.2012
Autor: hippias

Mal angenommen $V$ hat eine Basis $u,v$ mit $b(u,u)=1$ und $b(v,v)= -1$. Dann ist $W= [mm] \IR(u+v)$ [/mm] total isotrop.

Bezug
        
Bezug
sym. bil.form - total isotrop: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Fr 13.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de