www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - "tangenten ermittlung"
"tangenten ermittlung" < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"tangenten ermittlung": "aufgabe"
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 02.03.2005
Autor: abdelkader

I need help!


Wie ermittle ich die Tangenten einer Gleichung in den Nullpunkten?


                      f(x) =-1:8xhoch 4+1:2xhoch3

Und wie zeichne  ich den Graf der Funktion mit den Tangenten in den Nullpunkten.



War das nicht irgend wie mit Y=xm+n?

        
Bezug
"tangenten ermittlung": Bitte Formeleditor benutzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Mi 02.03.2005
Autor: oliver.schmidt


> I need help!
>  
>
> Wie ermittle ich die Tangenten einer Gleichung in den
> Nullpunkten?
>
>
> f(x) =-1:8xhoch 4+1:2xhoch3

Hallo erst mal,

versuch doch mal den Formeleditor zu benutzen

soll [mm] f(x)=-\bruch{1}{8}x^4+\bruch{1}{2}x^3 [/mm] oder

oder [mm] f(x)=-\bruch{1}{8x^4}+\bruch{1}{2x^3} [/mm] sein ?

Gruß
OLIVER

> Und wie zeichne  ich den Graf der Funktion mit den
> Tangenten in den Nullpunkten.
>  
>
>
> War das nicht irgend wie mit Y=xm+n?


Bezug
        
Bezug
"tangenten ermittlung": Antwort
Status: (Antwort) fertig Status 
Datum: 00:08 Do 03.03.2005
Autor: Adrienne

Also gegebem ist
[mm] f(x)=-\bruch{1}{8}x^{4}+\bruch{1}{2}x{^3} [/mm]
und P(0|0)
Du liegst schon richtig, wenn du sagst "da war doch mal was mit y=mx+n..."
Als erstes rechnest du die Nullpunkte aus, setzt also f(x)=0. Dann kommt raus, dass x=0 oder x=4 ist; du hast also zwei Punkte P1(0|0) und P2(4|0)

Jetzt rechnest du für beide Stellen die Steigung aus, also m.
Das machst du, indem du die Ableitung bildest und dann f'(0) bzw. für P2 f'(4) errechnest, sprich die Steigung der Tangente m den beiden Punkten.

Jetzt setzt du für y und x jeweils die Koordinaten des Punktes P1 ein.
0=0*m+n (m ist natürlich der oben ausgerechnete Wert)
also ist n=0
Das ist auch logisch, schließlich gibt n die y-Achsenabschnitt (Schnittpunkt mit der y-Achse an) und da wir wissen, dass die Gerade durch den Ursprung geht, kann n nur 0 sein.
Die Tangente ist also y=mx

Nun das ganze noch mal für die Koordinaten von P2
0=4*m+n (Achtung: hier ist m natürlich ein anderer Wert als bei Punkt P1!)
n=-4*m
y=m*x-4*m

Wie du den Graphen zeichnest weißt du ja sicher (Werte-Tabelle ist immer gut) und jetzt hast du ja auch die beiden Gleichungen der Tangenten...

Gruß
Adrienne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de