www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - tangentensteigung
tangentensteigung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tangentensteigung: Frage
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 21.10.2004
Autor: taschuu

Hallo,

ich soll die Steigung der Tangente an den Graphen von f für  [mm] x_{a}=1 [/mm]  berechnen. Nur bekomme ich jedesmal eine andere Lösung raus.
f(x)=0,5x²-3x-1  

Ich muss ja  [mm] x_{a}=1 [/mm] in [mm] f(x_{a}+h)-f(x_{a}) [/mm] einsetzen, oder?
Das heißt: 0,5(1+h)²-f(1)
= 0,5(1+2h+h²)-3(1+h)-1-(0,5*1²-3*1-1)
Ich weiß nicht, ob das bis hier überhaupt noch stimmt???!
Gibt es nicht vielleicht einen leichteren Weg die Steigung zu berechnen?
Ich komme jedenfalls immer auf ein anderes Ergebnis, mal -6, -7 oder -8!
Ich weiß nicht, woran das liegt.
Kann mir jemand helfen?
Danke

        
Bezug
tangentensteigung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Do 21.10.2004
Autor: Fugre


> Hallo,
>  
> ich soll die Steigung der Tangente an den Graphen von f für
>  [mm]x_{a}=1[/mm]  berechnen. Nur bekomme ich jedesmal eine andere
> Lösung raus.
> f(x)=0,5x²-3x-1  
>
> Ich muss ja  [mm]x_{a}=1[/mm] in [mm]f(x_{a}+h)-f(x_{a})[/mm] einsetzen,
> oder?

Ist fast richtig, du hast aber vergessen durch $ h $ zu teilen.

$ [mm] \bruch{f(x_{a}+h)-f(x_{a})}{h} [/mm] $

Dann willst du $ h $ gegen Null laufen lassen, also mit dem limes für $ h $ gegen 0 arbeiten oder?
Das ist aber ein sehr aufwendiges Verfahren, welches nicht zum Rechnen verwendet wird.
Wir haben es damals einmal gemacht um dann auf das Ableiten zu kommen bzw. es zu ergründen.

Ich würde dir also einfach empfehlen abzuleiten (wenn ihr es schon gelernt habt).
Die Ableitung einer Funktion wird durch einen Strich angezeigt, also hier $ f'(x) $ .
Die Ableitung entspricht auch immer der Steigung im Punkt, also auch der Steigung der Tangente.

Zum Ableiten:
Der Exponent der Funktionsvariablen (hier $ x $ ) wird zum Faktor und wird danach als Exponent um 1 erniedrigt.
Glieder ohne Funktionsvariable fallen weg.

Am Beispiel:
$ [mm] f(x)=0,5x^2-3x-1 [/mm] $
$ [mm] f'(x)=2*0,5x^1-3x^0 [/mm] $
$ f'(x)=x-3 $

Also ist die Steigung im Punkt $ P(1/f(1)) $ :
$ f'(1)=1-3=-2 $

>  Das heißt: 0,5(1+h)²-f(1)
>  = 0,5(1+2h+h²)-3(1+h)-1-(0,5*1²-3*1-1)
>  Ich weiß nicht, ob das bis hier überhaupt noch
> stimmt???!
>  Gibt es nicht vielleicht einen leichteren Weg die Steigung
> zu berechnen?
>  Ich komme jedenfalls immer auf ein anderes Ergebnis, mal
> -6, -7 oder -8!
>  Ich weiß nicht, woran das liegt.
>  Kann mir jemand helfen?
>  Danke
>  

Ich hoffe, dass dir diese Antwort hilft. Wenn noch was unklar ist, dann frag bitte nach.

Liebe Grüße
Fugre

Bezug
                
Bezug
tangentensteigung: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Fr 22.10.2004
Autor: taschuu

Hallo,


das habe ich mir fast schon gedacht. Das es die 1.Ableitung ist, war mir aber nicht ganz sicher. Du hast mir auf jeden Fall sehr geholfen.
Vielen Dank

Bezug
        
Bezug
tangentensteigung: siehe MatheBank
Status: (Antwort) fertig Status 
Datum: 12:12 Fr 22.10.2004
Autor: informix

Hallo taschuu,

> ich soll die Steigung der Tangente an den Graphen von f für
>  [mm]x_{a}=1[/mm]  berechnen. Nur bekomme ich jedesmal eine andere
> Lösung raus.
> f(x)=0,5x²-3x-1  
>

Dann schaust du am besten mal in unsere MBMatheBank  [buchlesen]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de