www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Test-Forum" - test
test < Test-Forum < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

test: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:04 Fr 09.07.2004
Autor: Stefan

test

ffdgdfgfdgdfg


test





Version von 14:22:53, als Gast gepostet:


Lieber Andreas!

Ich wollte dir ja noch die Rekursionsformel für die Hermite-Polynome nennen. Eventuell war das ja ein Ziel der Aufgabe, diese auch mit herzuleiten. Das war zumindestens mir ja nicht ganz klar. Denn ansonsten weiß ich nicht, was bei a) zu tun ist.

Ich werde die Rekursionsformel im allgemeineren Kontext herleiten und übernehme dabei die Darstellung in Stoer (Numerische Mathematik I, Springer-Verlag), gestalte den Beweis nur etwas ausführlicher und in eigenen Worten. Durch konkretes Einsetzen der Koeffizienten sollte es dir dann leicht mögich sein daraus eine konkrete Rekursionsformel für die Hermite-Polynome herzuleiten. Übrigens tauchten die Hermite-Polynome vor ein paar Tagen auch im Finanzmathematik-Forum aud: auch die mathematische Welt ist klein. ;-)

Beachte aber bitte, dass die Polynome zwar orthogonal sind, aber nicht notwendigerweise orthonormal. Ich weiß gerade nicht auf Anhieb, wie sich die Formel ändern, wenn man die Polynome normiert.

Es sei

[mm] $\bar{\Pi}_j [/mm] := [mm] \{p \in \Pi_j \, \vert\, p(x) = x^j + a_1 x^{j-1} + \dlots + a_j\, , a_i \in \IR \quad (i=1,\ldots,j)\}$ [/mm]

die Menge der normierten Polynomfunktionen vom Grad $j$ und dabei [mm] $\Pi_j$ [/mm] der lineare Raum aller reellen Polynomfunktionen vom Grad [mm] $\le [/mm] j$.

Es seien $a,b [mm] \in \bar{\IR}$, [/mm] $a<b$, beliebig gewält, und wir betrachten das Intervall $[a,b]$. Es sei [mm] $\omega:[a,b] \to \IR$ [/mm] eine Gewichtsfunktion auf $[a,b]$, d.h. [mm] $\omega$ [/mm] erfülle die folgenden Voraussetzungen:

(1) [mm] $\omega$ [/mm] ist auf $[a,b]$ nichtnegativ und messbar.

(2) Alle Momente

[mm] $\mu_k:= \int_a^b x^k \, \omega(x)\, [/mm] dx$     ($k [mm] \in \IN_0$) [/mm]

existieren und sind endlich.

(3) Für jede Polynomfunktion $s(x)$ mit

[mm] $\int_a^b \omega(x)s(x)\, [/mm] dx=0$

und

$s(x) [mm] \ge [/mm] 0$ für $x [mm] \in[a,b]$ [/mm]

gilt: $s(x)=0$.

Dann führen wir auf dem Raum aller Funktionen $f [mm] \in L^2[a,b]$, [/mm] für die das Integral

[mm] $\int_a^b\omega(x) \, f(x)^2\, [/mm] dx$

existiert und endlich ist, das folgende Skalarprodukt ein:

[mm] $\langle [/mm] f,g [mm] \rangle_{\omega}:= \int_a^b \omega(x)\, f(x)\, g(x)\, [/mm] dx$.


Man kann nun zeigen:


Satz

Es gibt für [mm] $j=0,1,\ldots$ [/mm] eindeutug bestimmte Polynomfunktionen [mm] $p_j \in \bar{\Pi}_j$ [/mm] mit

[mm] $\langle p_i,p_k \rangle_{\omega} [/mm] = 0$   für    $i [mm] \ne [/mm] k$.

Diese Polynomefunktionen genügen der Rekursionsformel

[mm] $p_0(x) [/mm] = 1$,

[mm] $p_{i+1}(x) [/mm] = [mm] (x-\delta_{i+1})\, p_i(x) [/mm] - [mm] \gamma_{i+1}^2\, p_{i-1}(x)$ [/mm]   für   $i [mm] \ge [/mm] 0$,

wobei [mm] $p_{-1}(x) [/mm] :=0$,

[mm] $\delta_{i+1}:= \frac{\langle xp_i,p_i \rangle_{\omega}}{\langle p_i,p_i \rangle_{\omega}}$ [/mm]    für   $i [mm] \ge [/mm] 0$.

(hierbei ist [mm] $\langle xp_i,p_i \rangle_{\omega} [/mm] = [mm] \int_a^b \omega(x)\, x\, p_i(x)^2\, [/mm] dx$)

und

[mm] $\gamma_{i+1}^2 [/mm] := [mm] \left\{ \begin{array}{ccc} 0 & \mbox{für} & i=0,\\[5pt] \frac{\langle p_i,p_i \rangle}{\langle p_{i-1},p_{i-1} \rangle} & \mbox{für} & i \ge 1. \end{array} \right.$ [/mm]


[u]Beweis[/b]

Die Polynome




Version von 12:22, als Stefan gepostet:

Lieber Andreas!

Ich wollte dir ja noch die Rekursionsformel für die Hermite-Polynome nennen. Eventuell war das ja ein Ziel der Aufgabe, diese auch mit herzuleiten. Das war zumindestens mir ja nicht ganz klar. Denn ansonsten weiß ich nicht, was bei a) zu tun ist.

Ich werde die Rekursionsformel im allgemeineren Kontext herleiten und übernehme dabei die Darstellung in Stoer (Numerische Mathematik I, Springer-Verlag), gestalte den Beweis nur etwas ausführlicher und in eigenen Worten. Durch konkretes Einsetzen der Koeffizienten sollte es dir dann leicht mögich sein daraus eine konkrete Rekursionsformel für die Hermite-Polynome herzuleiten. Übrigens tauchten die Hermite-Polynome vor ein paar Tagen auch im Finanzmathematik-Forum aud: auch die mathematische Welt ist klein. ;-)

Es sei

[mm] $\bar{\Pi}_j [/mm] := [mm] \{p \in \Pi_j \, \vert\, p(x) = x^j + a_1 x^{j-1} + \dlots + a_j\, , a_i \in \IR \quad (i=1,\ldots,j)\}$ [/mm]

die Menge der normierten Polynomfunktionen vom Grad $j$ und dabei [mm] $\Pi_j$ [/mm] der lineare Raum aller reellen Polynomfunktionen vom Grad [mm] $\le [/mm] j$.

Es seien $a,b [mm] \in \bar{\IR}$, [/mm] $a<b$, beliebig gewält, und wir betrachten das Intervall $[a,b]$. Es sei [mm] $\omega:[a,b] \to \IR$ [/mm] eine Gewichtsfunktion auf $[a,b]$, d.h. [mm] $\omega$ [/mm] erfülle die folgenden Voraussetzungen:

(1) [mm] $\omega$ [/mm] ist auf $[a,b]$ nichtnegativ und messbar.

(2) Alle Momente

[mm] $\mu_k:= \int_a^b x^k \, \omega(x)\, [/mm] dx$     ($k [mm] \in \IN_0$) [/mm]

existieren und sind endlich.

(3) Für jedes

        
Bezug
test: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mo 14.03.2005
Autor: Stefan

test1
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Test-Forum"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de