www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - totale diff, part diff etc
totale diff, part diff etc < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

totale diff, part diff etc: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mi 20.05.2009
Autor: Phecda

Hallo
Ich würde gerne einige Begriffe in der Diffrechnung mehrerer Veränderlicher systematisieren.

Eine Funktion die total differenzierbar ist, ist stetig?

Eine Funktion die part. diff ist, muss nicht umbedingt stetig sein.

Eine Funktion jedoch die stetig ist, ist auch part. ableitbar?

Und was heißt stetig ableitbar? Wenn die Fkt total ableitbar ist und die erste ableitung stetig?

Wenn eine Funktion stetig ableitbar ist, ist dann die Funktion stetig? Ihre Ableitung ist es ja?

Und wenn eine Funktion stetig ableitbar ist, sind ihre partiellen ableitungen auch stetig?

Okay das sind viele begriffe...
einige Sachen sind einfach Aussagen, bei einigen bin ich mir nicht sicher. wäre toll wenn jmd einfach immer ein kurzes kommentar setzen könnte wie das ganze funktioniert ;)
danke

        
Bezug
totale diff, part diff etc: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Mi 20.05.2009
Autor: fred97


> Hallo
>  Ich würde gerne einige Begriffe in der Diffrechnung
> mehrerer Veränderlicher systematisieren.
>  
> Eine Funktion die total differenzierbar ist, ist stetig?

Ja


>  
> Eine Funktion die part. diff ist, muss nicht umbedingt
> stetig sein.


ja. beispiel:


               $f(x,y) = [mm] \bruch{xy}{x^2+y^2}$ [/mm] für (x,y) [mm] \not= [/mm] (0,0)

und   $f(0,0) = 0$

diese Fkt. ist in (0,0) partiel diffbar, aber nicht stetig in (0,0)

>  
> Eine Funktion jedoch die stetig ist, ist auch part.
> ableitbar?

Nein. $f(x,y) = [mm] \wurzel{x^2+y^2}$ [/mm] ist in (0,0) stetig, aber in(0,0) nicht partiel diffbar.


>  
> Und was heißt stetig ableitbar? Wenn die Fkt total
> ableitbar ist und die erste ableitung stetig?

Ja


>  
> Wenn eine Funktion stetig ableitbar ist, ist dann die
> Funktion stetig?

ja

> Ihre Ableitung ist es ja?
>  
> Und wenn eine Funktion stetig ableitbar ist, sind ihre
> partiellen ableitungen auch stetig?


Ja



FRED

>  
> Okay das sind viele begriffe...
>  einige Sachen sind einfach Aussagen, bei einigen bin ich
> mir nicht sicher. wäre toll wenn jmd einfach immer ein
> kurzes kommentar setzen könnte wie das ganze funktioniert
> ;)
>  danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de