www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - totales Differential
totales Differential < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

totales Differential: Tipp zur Lösung
Status: (Frage) beantwortet Status 
Datum: 13:02 So 23.10.2011
Autor: DarkSetsuna

Aufgabe
Totales Differential
Berechnen Sie das totale Differential folgender Funktionen
g(x,y) = [mm] \bruch{1}{1+x^{3}+y^{3}} [/mm]

Hallo zusammen,
jetzt hat gerade das neue Semester angefangen und schon hab ich Fragen bezüglich der ersten Aufgabe :P

In der Vorlesung hatten wir zwar Beispiele, in diesen war aber immer weiterhin gegeben, dass die Variabeln von einander ahingen. z.B. [mm] x=y^{2} [/mm] oder dergleichen. Dies ist hier nicht der Fall, keine weitere Info die komplette aufgabe steht oben.

Soweit habe ich schon "gearbeitet" bzw. weiß ich es :
Allgemein gilt natürlich

df = [mm] \bruch{\partial f}{\partial x} \* [/mm] dx + [mm] \bruch{\partial f}{\partial y} \* [/mm] dy

An sich lässt sich der Teil
[mm] \bruch{\partial f}{\partial x} [/mm] bzw. selibige für y ganz einfach berechnen.
Einfache partielle ableitung d.h:

[mm] \bruch{\partial f}{\partial x} =-*\bruch{1}{(1+x^{3}+y^{3})^{2}}*3x^{2} [/mm] und Analog zu y nur mit [mm] 3y^{2} [/mm]

Gut soweit so gut aber was mache ich nun mit dx bzw. dy?
Zuerst habe ich gedacht, ich lass es einfach stehen, aber das kam mir zumindest irgendwie falsch vor und die Aufgabe wäre dann auch etwas schnell erledigt.

Wäre sehr darüber erfreut wenn mir jemand einen Tipp geben könnte. Was muss nun gerechnet werden oder vllt bin ich ja doch schon fertig weil nicht mehr geht?

Mfg
Florian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 So 23.10.2011
Autor: Al-Chwarizmi


>  Berechnen Sie das totale Differential folgender
> Funktionen
>  g(x,y) = [mm]\bruch{1}{1+x^{3}+y^{3}}[/mm]

> In der Vorlesung hatten wir zwar Beispiele, in diesen war
> aber immer weiterhin gegeben, dass die Variabeln von
> einander ahingen. z.B. [mm]x=y^{2}[/mm] oder dergleichen. Dies ist
> hier nicht der Fall, keine weitere Info die komplette
> aufgabe steht oben.
>  
> Soweit habe ich schon "gearbeitet" bzw. weiß ich es :
>  Allgemein gilt natürlich
>
> df = [mm]\bruch{\partial f}{\partial x} \*dx +\bruch{\partial f}{\partial y} \* dy[/mm]
>  
> An sich lässt sich der Teil
>   [mm]\bruch{\partial f}{\partial x}[/mm] bzw. selibige für y ganz
> einfach berechnen.
>  Einfache partielle ableitung d.h:
>  
> [mm]\bruch{\partial f}{\partial x} =-*\bruch{1}{(1+x^{3}+y^{3})^{2}}*3x^{2}[/mm]

Da solltest du nur noch beachten, dass die aktuelle Funktion
nicht f, sondern g heißt ...

> und Analog zu y nur mit [mm]3y^{2}[/mm]
>  
> Gut soweit so gut aber was mache ich nun mit dx bzw. dy?
>  Zuerst habe ich gedacht, ich lass es einfach stehen,    [ok]

   Richtig !    

> aber
> das kam mir zumindest irgendwie falsch vor und die Aufgabe
> wäre dann auch etwas schnell erledigt.

Die lassen euch mal erst ein bisschen warmlaufen. Keine
Bange, die schwierigeren Aufgaben werden nicht allzulange
auf sich warten lassen ...

LG   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de