www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - transponierte Vektoren
transponierte Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

transponierte Vektoren: Gesetzmäßigkeit korrekt?
Status: (Frage) beantwortet Status 
Datum: 23:52 So 23.10.2005
Autor: Petresepaddy

Gilt für die Vektoren a und b für a = (a1, a2, ..., an) und b = (b1, b2,...., bn), sowie a(t) sei der transponierte Vektor zu a und b(t) sei der transponierte Vektor zu b, folgendes Gesetz:
a*b = a(t)*b = a*b(t) = a(t) * b(t)

????? Falls nicht, bitte mit einer kurzen Begründung! Aus meinen Augen macht dieses Gesetz Sinn, aber dadurch würden sich meine Seminaraufgaben unverhältnismäßig stark reduzieren (,was mich verunsichert)!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
transponierte Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mo 24.10.2005
Autor: Bastiane

Hallo!

> Gilt für die Vektoren a und b für a = (a1, a2, ..., an) und
> b = (b1, b2,...., bn), sowie a(t) sei der transponierte
> Vektor zu a und b(t) sei der transponierte Vektor zu b,
> folgendes Gesetz:
>  a*b = a(t)*b = a*b(t) = a(t) * b(t)
>  
> ????? Falls nicht, bitte mit einer kurzen Begründung! Aus
> meinen Augen macht dieses Gesetz Sinn, aber dadurch würden
> sich meine Seminaraufgaben unverhältnismäßig stark
> reduzieren (,was mich verunsichert)!

Ich glaube nicht, dass das Sinn macht. Wenn nämlich a und b Spaltenvektoren sind, so wie man das ja meistens macht, dann sind ja [mm] a^T [/mm] und [mm] b^T [/mm] Zeilenvektoren. Und dann ist [mm] a^T*b [/mm] eine Operation, die einen Zeilenvektor mit einem Spaltenvektor multipliziert - das ergibt genau eine einzige Zahl. [mm] a*b^T [/mm] ist eine Multiplikation von einer Spalte mit einer Zeile - das ergibt eine Matrix. Naja, und welche Multiplikation nimmst du jetzt für a*b und [mm] a^T*b^T? [/mm] Im ersten Fall würde ich sagen, du multiplizierst skalar, im zweiten Fall - keine Ahnung - vielleicht das äquivalente zur Skalarmultiplikation, nur halt für Zeilenvektoren.

Aber du siehst, es sind ganz unterschiedliche Elemente, die du multiplizierst - demnach macht deine Aussage wohl eher keinen Sinn.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de