transponierte Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Gilt für die Vektoren a und b für a = (a1, a2, ..., an) und b = (b1, b2,...., bn), sowie a(t) sei der transponierte Vektor zu a und b(t) sei der transponierte Vektor zu b, folgendes Gesetz:
a*b = a(t)*b = a*b(t) = a(t) * b(t)
????? Falls nicht, bitte mit einer kurzen Begründung! Aus meinen Augen macht dieses Gesetz Sinn, aber dadurch würden sich meine Seminaraufgaben unverhältnismäßig stark reduzieren (,was mich verunsichert)!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hallo!
> Gilt für die Vektoren a und b für a = (a1, a2, ..., an) und
> b = (b1, b2,...., bn), sowie a(t) sei der transponierte
> Vektor zu a und b(t) sei der transponierte Vektor zu b,
> folgendes Gesetz:
> a*b = a(t)*b = a*b(t) = a(t) * b(t)
>
> ????? Falls nicht, bitte mit einer kurzen Begründung! Aus
> meinen Augen macht dieses Gesetz Sinn, aber dadurch würden
> sich meine Seminaraufgaben unverhältnismäßig stark
> reduzieren (,was mich verunsichert)!
Ich glaube nicht, dass das Sinn macht. Wenn nämlich a und b Spaltenvektoren sind, so wie man das ja meistens macht, dann sind ja [mm] a^T [/mm] und [mm] b^T [/mm] Zeilenvektoren. Und dann ist [mm] a^T*b [/mm] eine Operation, die einen Zeilenvektor mit einem Spaltenvektor multipliziert - das ergibt genau eine einzige Zahl. [mm] a*b^T [/mm] ist eine Multiplikation von einer Spalte mit einer Zeile - das ergibt eine Matrix. Naja, und welche Multiplikation nimmst du jetzt für a*b und [mm] a^T*b^T? [/mm] Im ersten Fall würde ich sagen, du multiplizierst skalar, im zweiten Fall - keine Ahnung - vielleicht das äquivalente zur Skalarmultiplikation, nur halt für Zeilenvektoren.
Aber du siehst, es sind ganz unterschiedliche Elemente, die du multiplizierst - demnach macht deine Aussage wohl eher keinen Sinn.
Viele Grüße
Bastiane
|
|
|
|