www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - trigonometrische identitaeten
trigonometrische identitaeten < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trigonometrische identitaeten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Do 18.06.2009
Autor: milky-way

Hallo!

ich habe gerade einen absoluten Block was eine Formel fuer sin angeht. Und zwar habe ich in meinem Heft stehen, dass der Realteil von [mm] e^{a+ib}=e^a*cosb [/mm] ist. das macht fuer mich sinn, denn [mm] e^{a+ib}=e^a*e^ib [/mm] und e^ib=cosb+isinb, realteil also cosb.

Nun steht da aber weiterhin, dass der Realteil von e^(a-ib)=sinb ist. Habe es wieder auseinander genommen: [mm] e^{a-ib}=e^a*e^-ib, [/mm] wobei e^-ib=cosb-isinb. aber der realteil ist doch wieder cosb und nicht sinb? bin da gerade ein wenig verwirrt.

danke und gruss

        
Bezug
trigonometrische identitaeten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:35 Do 18.06.2009
Autor: Al-Chwarizmi


> Hallo!
>  
> ich habe gerade einen absoluten Block was eine Formel fuer
> sin angeht. Und zwar habe ich in meinem Heft stehen, dass
> der Realteil von [mm]e^{a+ib}=e^a*cos\,b[/mm] ist. Das macht fuer mich
> Sinn, denn [mm]e^{a+ib}=e^a*e^{ib}[/mm] und [mm] e^{ib}=cos\,b+i\,sin\,b, [/mm] Realteil
> also cosb.
>
> Nun steht da aber weiterhin, dass der Realteil von
> [mm] e^{a-ib}=sin\,b [/mm] ist. Habe es wieder auseinander genommen:
> [mm]e^{a-ib}=e^a*e^{-ib},[/mm] wobei [mm] e^{-ib}=cos\,b-isin\,b. [/mm] aber der
> realteil ist doch wieder [mm] cos\,b [/mm] und nicht [mm] sin\,b [/mm] ? bin da gerade
> ein wenig verwirrt.
>  
> danke und gruss



Der Realteil ist  [mm] e^{a}*cos(b) [/mm]

noch ein Tipp:   damit Exponenten, die aus mehr als
einem Zeichen bestehen, richtig dargestellt werden,
musst du sie in geschweifte Klammern setzen !


Gruß     Al-Chw.


Bezug
                
Bezug
trigonometrische identitaeten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Do 18.06.2009
Autor: milky-way

Hallo

ja, entschuldigung, der gesamte Realteil ist natuerlich [mm] e^{a}*cos(b). [/mm]

aber es gilt doch auch: [mm] e^{a-ib}=e^{a}*e^{-ib}=e^{a}*cos(b)-i*sin(b) [/mm] und der Realteil ist dann doch auch wieder: [mm] e^{a}*cos(b) [/mm] ? Weil im Heft bei mir steht Re [mm] (e^{a-ib}) [/mm] = [mm] e^{a}*sin(b). [/mm] Wo kommt das sin her? steht beim sin nicht immer ein i bei und verschwindet deshalb im Realteil?

Bezug
                        
Bezug
trigonometrische identitaeten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Do 18.06.2009
Autor: fred97

Was im Heft steht ist falsch

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de