typ II codes < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $C,D,E$ drei Typ II Codes in [mm] $\IF_2^n$ [/mm] (das heißt doppelt gerade und selbstdual bezüglich des Standardskalarprodukts) und es gelte [mm] $\dim(C \cap [/mm] D) = [mm] \dim(C \cap [/mm] E) = 1$.
Zeige, dass dann [mm] $\dim(D \cap [/mm] E) [mm] \geq [/mm] 2$ gilt. |
Hey,
im Rahmen eines Seminars tauchte bei mir obige Fragestellung auf.
Da ich die Frage nicht selbst beantworten kann, habe ich bereits den Professor gefragt, der mir auch freundlicherweise eine ganze Menge dazu erklärt hat.
Leider bekomme ich das jetzt, wo ich versuche es sauber aufzuschreiben, nicht mehr zusammen...
Da ich sehr ungerne zum Professor gehen und ihn nochmal das gleiche fragen würde hoffe ich mal, jemand hier kann mir helfen.
Ich poste mal alles, woran ich mich noch erinnere:
Zuerst Vorbemerkung: da $C,D,E$ Typ II Codes sind, haben sie insbesondere Dimension [mm] $\frac{n}{2}$.
[/mm]
Sei $1$ der all-ones Vektor (bzw. der davon erzeugte Raum), also $1 = (1,1,...,1) [mm] \in \IF_2^n$. [/mm] Dann enthalten $C,D,E$ alle $1$ und liegen alle in [mm] $1^\perp$ [/mm] (das kann ich ggf. gern begründen^^) - insbesondere erklärt dies, warum der Schnitt mindestens Dimension 1 haben muss.
Wir können das ganze also im Vektorraum $V := [mm] 1^\perp/1$ [/mm] betrachten.
Bezeichnet $w(x)$ das Gewicht des Vektors $x$ (Anzahl der Einträge [mm] $\neq [/mm] 0$ in $x$), so haben wir auf $V$ eine wohldefiniere quadratische Form, definiert durch
[mm] $q(x+\langle 1\rangle) [/mm] := [mm] \frac{w(x)}{2} [/mm] + [mm] 2\IZ$.
[/mm]
Diese spielt irgendwo in dem Teil, den ich nicht mehr im Kopf habe, eine Rolle...
Nun ist $V = C [mm] \oplus [/mm] D = C [mm] \oplus [/mm] E$.
Angenommen auch $D$ und $E$ hätten in $V$ einen trivialen Schnitt (das heißt in [mm] $\IF_2^n$ [/mm] wäre ihr Schnitt eindimensional).
Da sich jedes Element aus $V$ als $c+d$ mit $c [mm] \in [/mm] C$, $d [mm] \in [/mm] D$ schreiben lässt, hätte jede Basis von $E$ die Form [mm] $(e_1,\ldots [/mm] , [mm] e_k)$ [/mm] mit [mm] $e_i [/mm] = [mm] c_i [/mm] + [mm] d_i$ [/mm] für alle $i$ und $k = [mm] \frac{n-2}{2}$. [/mm] Da $C$ und $E$ einen trivialen Schnitt haben, müssen die [mm] $d_i$ [/mm] eine Basis von $D$ bilden - denn können wir die $0$ nicht trivial linearkombinieren, so würde die zugehörige Kombination der [mm] $c_i$ [/mm] ein Element [mm] $\neq [/mm] 0$ aus $C [mm] \cap [/mm] E$ liefern.
Nehmen wir an, dass $E$ auch mit $D$ trivialen Schnitt hat, so müssen analog die [mm] $c_i$ [/mm] eine Basis von $C$ bilden.
Jetzt kommt die große Lücke und am Schluss wurde die oben definierte quadratische Form verwendet, um eine schiefsymmetrische Matrix zu erhalten, die nicht vollen Rang hat; was dann in irgendeiner Form einen Widerspruch zur obigen Annahme was alles Basis von wem ist liefert...
Ich weiß die Frage ist recht speziell und es ist einiges zu lesen, aber wenn mir da jemand helfen kann wäre ich echt dankbar.
lg
Schadow
PS: Wen es interessiert, die Frage kommt aus der Aufgabe, die hier (PDF) beschriebene Konstruktion (2.1 auf Seite 2) auf drei Codes $C,D,E$ (oder allgemein beliebig viele Codes) auszuweiten.
|
|
|
|
So, nach einer Nachtschicht zu diesem und anderen Themen bin ich einen guten Schritt weitergekommen, so dass ich im Moment hoffe den Beweis nochmal selbst zusammen zu kriegen oder zumindest so weit, dass der fehlende Rest kleine LA-Fragen sind. :)
PS: So, mit ein wenig "bekanntermaßen gilt" konnte ich die Frage jetzt klären, das heißt den Beweis wieder zusammenkriegen. :)
|
|
|
|