www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Übereinstimmung von LDFG
Übereinstimmung von LDFG < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übereinstimmung von LDFG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 22.06.2012
Autor: petropen

Aufgabe
Zeigen Sie, dass die charakteristische Gleichung einer linearen homogenen Differentialgleichung der
Ordnung n mit konstanten Koeffizienten mit dem charakteristischen Polynom der Koeffizientenmatrix des assoziierten
Differentialgleichungssystems erster Ordnung bis auf das Vorzeichen übereinstimmt.



Hallo,

hat jemand eine Idee, wie das gehen soll?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.onlinemathe.de/forum/charakt-Gleichung-und-charakt-Polynom

        
Bezug
Übereinstimmung von LDFG: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Fr 22.06.2012
Autor: Diophant

Hallo und

[willkommenmr]

> Zeigen Sie, dass die charakteristische Gleichung einer
> linearen homogenen Differentialgleichung der
> Ordnung n mit konstanten Koeffizienten mit dem
> charakteristischen Polynom der Koeffizientenmatrix des
> assoziierten
> Differentialgleichungssystems erster Ordnung bis auf das
> Vorzeichen übereinstimmt.
> Hallo,
>
> hat jemand eine Idee, wie das gehen soll?

Definiere dir Hilfsfunktionen der Folgenden Art:

[mm] y_0(x)=y(x) [/mm]
[mm] y_1(x)=y'(x) [/mm]
[mm] y_2(x)=y''(x)=\left(y_1(x)\right)' [/mm]
.
.
.
[mm] y_{n-1}(x)=y^{(n-1)}(x)=\left(y_{n-2}(x)\right)' [/mm]

Drücke zusätzlich noch die 1. Ableitung der Hilfsfunktion [mm] y_{n-1} [/mm] als Vielfaches der Hilfsfunktionen [mm] y_i [/mm] aus. Jetzt hast du ein lineares homogenes System erster Ordnung. Mit seiner Koeffizientenmatrix erhältst du die charakteristsiche Gleichung, welche mit derjenigen der zugehörigen DGL n. Ordnung eben bis auf Vorzeichen übereinsteimmen sollte.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de