www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - übergreifende aufgaben
übergreifende aufgaben < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

übergreifende aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 So 30.01.2005
Autor: ziska

hallihallo!
ich mal wieder. sitzt schon seit ner knappen woche an folgenden aufgaben. teilweise habe ich diese auch rausbekommen und hab eigentlich auch ansätze für die lösungen gefunden, komme aber irgendwie net weiter.

aufgabe:
ein tetraeder werde von den Vektoren  [mm] \vec{a}, \vec{b} [/mm]  und [mm] \vec{c} [/mm] aufgespannt. Die Punkte [mm] M_a [/mm] , [mm] M_b [/mm] , [mm] M_c [/mm] seien die Mittelpunkte der Strecken OA, OB, OC (anm:also jeweils die Hälfte der richtungsvektoren) ;  
[mm] M_1 [/mm] , [mm] M_2 [/mm] , [mm] M_3 [/mm] seien die Mittelpunkte der Strecken AB, BC, CA .

a) Ermittle Gleichungen der drei Geraden [mm] g_1 (M_a, M_2) [/mm] , [mm] g_2 (M_b [/mm] , [mm] M_3), g_3 (M_c, M_1) [/mm] !
  meine Lösung: mithilfe der 2-punkteform einer Geraden habe ich folgende geraden aufgestellt:
[mm] g_1: \vec{x} [/mm] = [mm] \vec{x_Ma} [/mm] + t[ [mm] \vec{x_M2}- \vec{x_Ma}] [/mm]
                       = 0,5  [mm] \vec{a} [/mm] + t[ 0,5  [mm] \overrightarrow{BC} [/mm] - 0,5  [mm] \vec{a}] [/mm]
                       = 0,5  [mm] \vec{a} [/mm] + t[ 0,5 [mm] \vec{c} [/mm] - [mm] 0,5\vec{b}- 0,5\vec{a}] [/mm]

[mm] g_2: [/mm] auf dieselbe Art und weise folgendes Ergebnis:
          [mm] \vec{x} [/mm] = 0,5 [mm] \vec{b}+ [/mm] u [  0,5 [mm] \vec{a} [/mm] - [mm] 0,5\vec{c}- 0,5\vec{b}] [/mm]
[mm] g_3: \vec{x} [/mm] = 0,5 [mm] \vec{c}+ [/mm] v [  0,5 [mm] \vec{b} [/mm] - [mm] 0,5\vec{a}- 0,5\vec{c}] [/mm]


b) Zeige, dass die Geraden [mm] g_1 [/mm] und [mm] g_2 [/mm] sich in einem Punkt S schneiden.
    mein ansatz:
    Wenn die geraden sich schneiden sollen, müssen die richtungsvektoren linear unabhängig sein. so weit so gut. in dem obenliegenden fall geht das ja auch, da beide Vektoren nicht lin.abh. sind!
ich hatte allerdings letzte woche eine andere lösung und da stimmten beide richtungsvektoren dahingehend überein, dass man den einen bloß mit -1 multiplizieren musste, um den andren zu erhalten, d.h. sie sind lin.abh. gewesen. wodran liegt das? kann mir nur ein fehler unterlaufen sein?

c) In welchem Verhältnis teilt S die Strecken [mm] M_a M_2 [/mm] und [mm] M_b M_3 [/mm] ?
    Der  Lösungsweg ist mir zu lang aufzuschreiben, aber das ergebnis ist:
  S halbiert diese Strecken.

d) untersuche, ob S auch auf der Geraden [mm] g_3 [/mm] liegt! Zeige, dass für den Vektor [mm] \vec{s} [/mm] zum Pfeil  [mm] \overrightarrow{OS} [/mm] gilt:
[mm] \vec{s}= [/mm] o,25 [mm] (\vec{a}+ \vec{b}+ \vec{c} [/mm] )
  bei dieser aufgabe habe für S die beschreibenden Vektoren eingesetzt.
  S= 0,5 [mm] \overrightarrow{M_a M_2} [/mm]
    = 0,5 (0,5 [mm] \vec{a}- \vec{a} +\vec{b}+ 0,5(-\vec{b}+ \vec{c})) [/mm]
   =   0,5 (0,5 [mm] \vec{a}- \vec{a} +\vec{b}- 0,5\vec{b}+ [/mm] 0,5 [mm] \vec{c}) [/mm]
   = 0,5 (-0,5  [mm] \vec{a} [/mm]  + [mm] 0,5\vec{b} [/mm] + 0,5 [mm] \vec{c}) [/mm]
  Das hab ich dann bei [mm] g_3 [/mm] anstatt  [mm] \vec{x} [/mm] eingesetzt, komme aber zu keinem Ergebnis.

Den zweiten teil der aufgabe versteh ich nicht bzw. hab keinerlei ansätze dafür!

ich hoffe, ihr könnt mir (wieder einmal) weiterhelfen. ein liebes dankeschön im voraus!!!
GGLG,
ziska

        
Bezug
übergreifende aufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 So 30.01.2005
Autor: Onkelralfi

Hi ziska.
ich blick da nicht so ganz durch.
also du hast den vektor s. und sollst kontrolieren ob der vektor auf de rgeraden liegt:
[mm] g_3: \vec{x} [/mm] = 0,5 [mm] \vec{c}+ [/mm] v [ 0,5 [mm] \vec{b} [/mm] - [mm] 0,5\vec{a}- 0,5\vec{c}] [/mm]

das kannst du durch gleichsetzen oder komplimerntäres einsetzen erreichen.

so dann:
[mm] \vec{s}= [/mm] o,25 [mm] (\vec{a}+ \vec{b}+ \vec{c} [/mm] )
das zu zeigen ist auch nicht so schwer.

es ist zu überprüfen ob vektor s durch die anderen drei vektoren ausdrückbar ist.

du nimmst den vektor a mal 0,25+wektor b*0,25 vektor c*0,25 und zeigst das das den vektor s ergibt. dann bist du fertig:)

(mir ist jetzt nicht ganz klar woher, irgendwie ist das komish aufgeschrieben tut mir leid.wenn du sie hast schreib sie bitte mal.)
das ist eigendlich schon alles was die aufgabe will.
(also schreibe bitte mal Vektor a=   , vektor b= ,   vektor c= und vektor s=  )
dann kann  ich dir weiterhelfen.
bye Ralf

Bezug
                
Bezug
übergreifende aufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:42 Di 01.02.2005
Autor: ziska

hallo!
DIe aufgabe ist so gegeben, wie ich sie aufgeschrieben hab! Für Vektor a, b und c sind keine werte gegeben! sonst fiele mir das auch sicher leichter!!!
trotzdem danke für deine bemühungen!!! Die aufgabe hab ich jetzt so weit berechnen können....
GLG,
ziska

Bezug
        
Bezug
übergreifende aufgaben: Teilaufgaben a) und b)
Status: (Antwort) fertig Status 
Datum: 23:49 So 30.01.2005
Autor: Paulus

Liebe Franziska

weil sich bereits in Teilaufgabe a) ein Fehler eingeschlichen hat, kommst du vielleicht nicht weiter?

Ich korrigiere also einfach einmal Teilaufgabe a) und zeige dir Teilaufgabe b)

Dann kommst du evtl selber wieder weiter.

Falls nicht, dann meldest du dich einfach wieder, ja? :-)


>  ein Tetraeder werde von den Vektoren  [mm]\vec{a}, \vec{b}[/mm]  
> und [mm]\vec{c}[/mm] aufgespannt. Die Punkte [mm]M_a[/mm] , [mm]M_b[/mm] und [mm]M_c[/mm] seien
> die Mittelpunkte der Strecken OA, OB, OC;
> [mm]M_1[/mm] , [mm]M_2[/mm] , [mm]M_3[/mm] seien die Mittelpunkte der Strecken AB, BC,
> CA .
>  
> a) Ermittle Gleichungen der drei Geraden [mm]g_1 (M_a, M_2)[/mm] ,
> [mm]g_2 (M_b[/mm] , [mm]M_3), g_3 (M_c, M_1)[/mm] !
>    meine Lösung: mithilfe der 2-punkteform einer Geraden
> habe ich folgende geraden aufgestellt:
> [mm]g_1: \vec{x}[/mm] = [mm]\vec{x_Ma}[/mm] + t[ [mm]\vec{x_M2}- \vec{x_Ma}] [/mm]
>    
>                      = 0,5  [mm]\vec{a}[/mm] + t[ 0,5  
> [mm]\overrightarrow{BC}[/mm] - 0,5  [mm]\vec{a}][/mm]

[notok] Das stimmt nicht!

Korrekt ist:
[mm] $=\bruch{1}{2}\vec{a}+ t(\vec{b}+\bruch{1}{2}\overrightarrow{BC}-\bruch{1}{2}\vec{a})$ [/mm]

und dann weiter:

[mm] $=\bruch{1}{2}\vec{a}+ t(\bruch{1}{2}\vec{b}+\bruch{1}{2}(\vec{c}-\vec{b})-\bruch{1}{2}\vec{a})=\bruch{1}{2}\vec{a}+ t(\bruch{1}{2}\vec{b}+\bruch{1}{2}\vec{c}-\bruch{1}{2}\vec{a})$ [/mm]

Weil der Richtungsvektor einer Geradengleichung beliebige Länge haben darf, einzig die Richtng muss stimmen, würde ich den noch mit $2_$ multiplizieren und erhielte:

[mm] $g_1: \vec{x}=\bruch{1}{2}\vec{a}+t(\vec{b}+\vec{c}-\vec{a})$ [/mm]
  
[mm] $g_2$ [/mm] kann einfach durch Vertauschen der Vektoren aus [mm] $g_1$ [/mm] hergeleitet werden (Symmetrie)

[mm] $g_2: \vec{x}=\bruch{1}{2}\vec{b}+u(\vec{a}+\vec{c}-\vec{b})$ [/mm]

[mm] $g_3: \vec{x}=\bruch{1}{2}\vec{c}+v(\vec{a}+\vec{b}-\vec{c})$ [/mm]

> b) Zeige, dass die Geraden [mm]g_1[/mm] und [mm]g_2[/mm] sich in einem Punkt
> S schneiden.
> mein ansatz:
> Wenn die geraden sich schneiden sollen, müssen die
> richtungsvektoren linear unabhängig sein. so weit so gut.
> in dem obenliegenden fall geht das ja auch, da beide
> Vektoren nicht lin.abh. sind!
> ich hatte allerdings letzte woche eine andere lösung und da
> stimmten beide richtungsvektoren dahingehend überein, dass
> man den einen bloß mit -1 multiplizieren musste, um den
> andren zu erhalten, d.h. sie sind lin.abh. gewesen. wodran
> liegt das? kann mir nur ein fehler unterlaufen sein?
>

Ja, da muss irgend ein Fehler vorliegen. ;-)

Hier kann man einfach so überlegen: wenn sich die beiden Geraden schneiden, dann muss es ein bestimmtes $t_$ und ein dazugehöriges $u_$ geben, so dass der gleiche Punkt erreicht wird, wenn man dieses $t_$ in [mm] $g_1$ [/mm] einsetzt und dieses $u_$ in [mm] $g_2$ [/mm] einsetzt.

Wenn man die Gleichungen für [mm] $g_1$ [/mm] und [mm] $g_2$ [/mm] noch etwas umschreibt:

[mm] $g_1: \vec{x}=(\bruch{1}{2}-t)\vec{a}+t\vec{b}+t\vec{c}$ [/mm]
[mm] $g_2: \vec{x}=u\vec{a}+(\bruch{1}{2}-u)\vec{b}+u\vec{c}$ [/mm]

dann kann man einfach die Komponenten einzeln vergleichen (das darf man, weil ja [mm] $\vec{a}$, $\vec{b}$ [/mm] und [mm] $\vec{c}$ [/mm] linear unabhängig sind).

Es gilt also:

[mm] $\bruch{1}{2}-t=u$ [/mm]
[mm] $\bruch{1}{2}-u=t$ [/mm]
$t=u$

Dies lässt sich in der Tat nach $t_$ und $u_$ auflösen (das ist nicht selbstverständlich, weil das Gleichungssystem ja überbestimmt ist):

[mm] $t=\bruch{1}{4}$ [/mm]
[mm] $u=\bruch{1}{4}$ [/mm]

Das kannst du bei [mm] $g_1$ [/mm] oder bei [mm] $g_2$ [/mm] einsetzen, und in beiden Fällen bekommst du:

[mm] $\vec{s}=\bruch{\vec{a}}{4}+\bruch{\vec{b}}{4}+\bruch{\vec{c}}{4}$ [/mm]

So, liebe Franziska, versuche nun bitte, die anderen Teilaufgaben entsprechend zu lösen. Und wie gesagt: wenn du Schwierigkeiten hast, dann meldest du dich einfach wieder! :-)

Mit lieben Grüssen

Paul

Bezug
                
Bezug
übergreifende aufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:47 Di 01.02.2005
Autor: ziska

hallo!

> weil sich bereits in Teilaufgabe a) ein Fehler
> eingeschlichen hat, kommst du vielleicht nicht weiter?
> Das stimmt nicht!
>  
> Korrekt ist:
>  [mm]=\bruch{1}{2}\vec{a}+ t(\vec{b}+\bruch{1}{2}\overrightarrow{BC}-\bruch{1}{2}\vec{a})[/mm]

okay, ich hab mir deine lösung gut durchgelesen und sie mit meiner verglichen, aber ich find den fehler einfach net.....  

Bei der aufgabe d) bin ich dir sehr dankbar, hab die nun auch lösen können. zumindestens den letzteren teil. den teil, wo man zeigen soll, das S auf [mm] g_3 [/mm] liegt, hab ich net verstanden. hab aber zwei freistunden und besprech das dann mit ner freundin.
Trotzdem DANKE!!!!
LG,
ziska

Bezug
                        
Bezug
übergreifende aufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 Di 01.02.2005
Autor: ziska

da bin ich wieder. hab keine möglichkeit gefunden, meine frage aufzuheben, deswegen schreibe ich diese mitteilung! die probleme haben sich gelöst!
danke trotzdem!!!
LG,
ziska

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de