www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Überprüfung einer Matrix
Überprüfung einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überprüfung einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mo 07.11.2011
Autor: Margorion

Aufgabe
Welche Aussagen über das folgende Gleichungssystem sind wahr ?
x1                     - 2x3      = a
2x1      + x2          - x3       = 2*a +b
3x1      + 2*x2        + 2cx3     = 5*a


1) Für a=b=c ist das Gleichungssystem lösbar.

2) Es gibt unendlich viele Lösungen für a =b und c> 0.

3) Für c= 0 und [mm] a\not=b [/mm]   existiert keine Lösung.

4) Für [mm] c\not= [/mm] 0 und a>b existiert eine eindeutige Lösung.

Hallo,
ich komme dieses mal mit einer kleinen Frage vorbei. Und eigentlich (hoffe ich eher) brauche ich nur einen wirklichen Ansatz zum Lösen dieser Aufgabe.

Meine Idee war es für jede Aussage die Matrix entsprechend umzuformen und es dann zu beweisen.
Beispiel:
Für 1.) würde ich einfach überall a einsetzen anstatt b oder c.
Für 2.) a anstatt b einsetzen. Aber da bin ich mir ganz unsicher.
Für 3.) würde ich das den umgedrehten Fall testen, nämlich das a=b ist (der Ausdruck 2cx3 fällt weiterhin raus) und es eine Lösung gibt. Aber auch hier bin ich mir sehr unsicher.
Für 4.) würde ich c= 0 setzen und für b=(a+n).

Stimmt denn dieser ansatz überhaupt? Z.b. weiß ich bei meiner Überprüfung der ersten Aussage (a=b=c) überhaupt nicht wohin ich rechnen soll. Durch meine Umrechnungen komme ich nur auf noch kompliziertere Ausdrücke, ohne wirklich voran zu kommen.

Ich hoffe ihr habt da einen kleinen Tipp für mich :-)
Grüße
Margorion

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Überprüfung einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mo 07.11.2011
Autor: fred97


> Welche Aussagen über das folgende Gleichungssystem sind
> wahr ?
>  x1                     - 2x3      = a
>  2x1      + x2          - x3       = 2*a +b
> 3x1      + 2*x2        + 2cx3     = 5*a
>  
>
> 1) Für a=b=c ist das Gleichungssystem lösbar.
>  
> 2) Es gibt unendlich viele Lösungen für a =b und c> 0.
>  
> 3) Für c= 0 und [mm]a\not=b[/mm]   existiert keine Lösung.
>  
> 4) Für [mm]c\not=[/mm] 0 und a>b existiert eine eindeutige
> Lösung.
>  Hallo,
>  ich komme dieses mal mit einer kleinen Frage vorbei. Und
> eigentlich (hoffe ich eher) brauche ich nur einen
> wirklichen Ansatz zum Lösen dieser Aufgabe.
>
> Meine Idee war es für jede Aussage die Matrix entsprechend
> umzuformen und es dann zu beweisen.
> Beispiel:
>  Für 1.) würde ich einfach überall a einsetzen anstatt b
> oder c.
>  Für 2.) a anstatt b einsetzen. Aber da bin ich mir ganz
> unsicher.
>  Für 3.) würde ich das den umgedrehten Fall testen,
> nämlich das a=b ist (der Ausdruck 2cx3 fällt weiterhin
> raus) und es eine Lösung gibt. Aber auch hier bin ich mir
> sehr unsicher.
>  Für 4.) würde ich c= 0 setzen und für b=(a+n).
>  
> Stimmt denn dieser ansatz überhaupt? Z.b. weiß ich bei
> meiner Überprüfung der ersten Aussage (a=b=c) überhaupt
> nicht wohin ich rechnen soll. Durch meine Umrechnungen
> komme ich nur auf noch kompliziertere Ausdrücke, ohne
> wirklich voran zu kommen.
>
> Ich hoffe ihr habt da einen kleinen Tipp für mich :-)

Bringe das LGS auf Stufenform

FRED


>  Grüße
>  Margorion
>  
> P.S. Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de