www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Übersetzung Physik<-> Mathe
Übersetzung Physik<-> Mathe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übersetzung Physik<-> Mathe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:06 Do 07.09.2006
Autor: Oliver

Hallo zusammen,

in der Wikipedia wird unter dem Eintrag []Kinetische Energie aus den Beziehungen $F=ma$ und $W=Fs$ folgendes Integral berechnet:

[mm]W=\int_0^s{F ds'}=\int_0^s{(ma) ds'}=m \int_0^s{\bruch{dv}{dt} ds'}=m \int_0^s{\bruch{dv}{ds}\bruch{ds}{dt} ds'}=m \int_0^s{\bruch{dv}{ds}v ds'}=m \int_0^v{v' dv'}=\bruch{1}{2}mv^2 [/mm]

Kann mir jemand diese Rechnung bitte in eine für Mathematiker verständliche Form überführen? Da kommen und gehen die Indizes ja gerade, wie man es braucht und dann werden die Ableitungen mal eben wie Brüche behandelt und entsprechend erweitert.
Gibt es eventuell gute Literatur, die einem diese Schreibweisen und Denkweisen etwas näher bringen?

Schonmal Danke im Voraus
Oliver

        
Bezug
Übersetzung Physik<-> Mathe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Do 07.09.2006
Autor: Palin

Ok im Prinzi hängt es mit den einheiten zusammen.

F = Kraft  = [mm] kg*m/s^2 (Kilogram*Meter/Sekunde^2) [/mm]
s= Strecke = m

mit Fs = (am)*s (a Beschleunigung) (m Masse)
Die Beschleunigung ist nun die Änderung der Geschwindigkeit also
a= dv/dt

Im nächsten schrit wird dann mit 1 = ds/ds multipliziert und der Bruchumgestelt da ds/dt = v

Also aus

dv/dt * ds/ds = dv/ds * ds/dt = dv/ds * v

Integrieren über s und dann nochmal über v da ja auch da die Stecke drinsteck => 1/2 [mm] m*v^2 [/mm]

Ich hoffe mal das erhellt die Sache einwenig.


Bezug
                
Bezug
Übersetzung Physik<-> Mathe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:03 Do 07.09.2006
Autor: Oliver

Hallo Palin,

danke für die Antwort, aber einige Unklarheiten bestehen leider noch. Insbesondere habe ich als Mathematiker Bauchschmerzen "infinitesimale Erweiterungen" à la ds/ds=1 zu benutzen.

Ich versuche mal, die Einflussgrößen explizit darzustellen, vielleicht wird dann klar wo meine Probleme liegen:

Die Beschleunigung ist doch ein zeitabhängiger Vektor:
[mm] $\vec{a}(t)=\bruch{\delta \vec{v} (t)}{\delta t}=\bruch{\delta^2 \vec{s} (t)}{\delta^2 t}$ [/mm]

Die Kraft sollte in dieser Darstellung wie folgt definiert sein:
[mm] $\vec{F}(t)=m*\vec{a}(t)$ [/mm]

Wie kann ich in dieser Darstellung, den Wert der Kinetischen Energie formale korrekt - d.h. unter Beibehaltung aller Indizies und ohne das Kürzen infinitesimaler Größen - herleiten.

Unter Kinetischer Energie verstehe ich dabei die Energie die notwenig ist die Masse m aus dem Ruhezustand auf die Geschwindigkeit v zu beschleunigen.

Danke
Oliver

P.S. Vielleicht sollte ich den Artikel lieber ins Physik-Forum verschieben ;)

Bezug
                        
Bezug
Übersetzung Physik<-> Mathe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:11 Do 07.09.2006
Autor: unixfan

:-)
Jaja, das kenn ich gut - "infinitesimale Erweiterungen" etc. sind gang und gebe in der theoretischen Physik.... Da hilft nur eins: Mathe-Augen zu und durch... (PS: jede Funktion ist stetig)...
Bin froh dass es noch anderen so geht wie mir :-)

Bezug
                        
Bezug
Übersetzung Physik<-> Mathe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Do 07.09.2006
Autor: unixfan

Hallo!

OK, ich versuchs mal bißchen mathematischer:

Wir nehmen nur an: F(x(t)) = m [mm] \bruch{d^2x(t)}{dt^2} [/mm]

W = [mm] \int\limits_0^s [/mm] F(x) dx = [mm] \int\limits_0^t [/mm] F(x(t)) [mm] \bruch{dx(t)}{dt} [/mm] dt = [mm] \int\limits_0^t [/mm] m [mm] \bruch{d^2x(t)}{dt^2} \bruch{dx(t)}{dt} [/mm] dt = m/2 [mm] \cdot \int\limits_0^t \bruch{d(\bruch{dx(t)}{dt})^2}{dt} [/mm] dt = m/2 [mm] \left(\bruch{dx(t)}{dt}\right)^2 [/mm]

Der erste Schritt entsteht durch Substitution.
Beim dritten nutze ich aus, dass [mm] \bruch{d \dot{x}^2}{dt} [/mm] = 2 [mm] \dot{x} \ddot{x} [/mm] ist

Über Kommentare würde ich mich freuen...

Bezug
                        
Bezug
Übersetzung Physik<-> Mathe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 09.09.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Übersetzung Physik<-> Mathe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Do 07.09.2006
Autor: Event_Horizon

Naja, das mit dem ds/ds=1 einfach einfügen ist evtl etwas unbefriedigend, wenn man denkt, daß das ja Differenzialoperatoren sind, und keine einfachen Variablen.


Ich hatte es mal hier genauer erklärt, wenn man das als Kettenregel betrachtet. Das läßt sich nach Belieben umstricken und führt daher auch zu sowas einfachem wie "ds/ds=1 einfügen"

Bezug
        
Bezug
Übersetzung Physik<-> Mathe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 07.09.2006
Autor: Leopold_Gast

So sind sie, unsere Physiker! Diese Umformung kann man nur verstehen, wenn man schon verstanden hat, was man verstehen will ... äh  hm ...

Das ganze Durcheinander rührt daher, daß in der Physik meist nicht zwischen abhängiger Variable und Funktion unterschieden wird. Sind wir da also einmal ausnahmsweise sorgfältig!

Eine Funktion [mm]f[/mm] ordnet einer unabhängigen Variablen [mm]x[/mm] eine abhängige Variable [mm]y[/mm] zu:

[mm]y = f(x)[/mm]

Wir unterscheiden also zwischen dem Zuordnungsprozeß [mm]f[/mm] und dem konkreten Ergebnis [mm]y[/mm] der Zuordnung bei der Eingabe [mm]x[/mm].



Jetzt zur Physik. Der Weg [mm]s[/mm] ist eine Funktion der Zeit [mm]t[/mm]:

[mm]s = \sigma(t)[/mm]

Zu einem konkreten Zeitpunkt [mm]t[/mm] befindet sich der Körper an der Wegmarke [mm]s[/mm]. Die Funktion [mm]\sigma[/mm] vermittelt diese Zuordnung.

Definitionsgemäß sind dann Geschwindigkeit [mm]v[/mm] und Beschleunigung [mm]a[/mm] zur Zeit [mm]t[/mm] erste bzw. zweite Ableitung von [mm]\sigma[/mm]:

[mm]s = \sigma(t)[/mm]
[mm]v = \varphi(t) = \dot{\sigma}(t)[/mm]
[mm]a = \alpha(t) = \dot{\varphi}(t) = \ddot{\sigma}(t)[/mm]

[mm]\varphi[/mm] bzw. [mm]\alpha[/mm] sind die Funktionen, die diese Zuordnungen bewerkstelligen. Nehmen wir nun an, daß der Körper sich zum Zeitpunkt [mm]t=0[/mm] bei der Wegmarke [mm]s=0[/mm] befindet und die Geschwindigkeit [mm]v=0[/mm] hat. Mit unseren Funktionen schreibt sich das so:

[mm]\sigma(0) = 0 , \ \varphi(0) = 0[/mm]

Nach einer gewissen Zeit [mm]t_0[/mm] befindet sich der Körper bei [mm]s_0[/mm] und hat die Geschwindigkeit [mm]v_0[/mm]:

[mm]\sigma \left( t_0 \right) = s_0 , \ \varphi \left( t_0 \right) = v_0[/mm]

Welche Arbeit [mm]W[/mm] wurde dabei verrichtet?

Jetzt kommt die Kraft [mm]F[/mm] ins Spiel. Bei der Wegmarke [mm]s[/mm] wirke die Kraft [mm]F[/mm]. Wieder eine Funktion! Nennen wir sie [mm]\Phi[/mm]:

[mm]F = \Phi(s)[/mm]

Andererseits ist ja [mm]s = \sigma(t)[/mm], so daß man [mm]F[/mm] auch als Funktion von [mm]t[/mm] betrachten kann:

[mm]F = \Phi \left( \sigma(t) \right) = \left( \Phi \circ \sigma \right) (t)[/mm]

Die Zuordnung [mm]t \mapsto F[/mm] ist also gerade die Verkettung [mm]\Phi \circ \sigma[/mm].

Nach Definition der Arbeit gilt nun:

[mm]W = \int_{s=0}^{s=s_0}~F~\mathrm{d}s = \int_{s=0}^{s=s_0}~\Phi(s)~\mathrm{d}s[/mm]

Und jetzt kommt's! Wir substituieren [mm]s = \sigma(t) , \ \mathrm{d}s = \dot{\sigma}(t) \, \mathrm{d}t[/mm]. Die zugehörigen [mm]t[/mm]-Grenzen sind nach Obigem [mm]t = 0[/mm] und [mm]t = t_0[/mm]. Die Substitutionsregel liefert:

[mm]W = \int_{t=0}^{t=t_0}~\Phi \left( \sigma(t) \right) \cdot \dot{\sigma}(t)~\mathrm{d}t = \int_{t=0}^{t=t_0}~\left( \Phi \circ \sigma \right)(t) \cdot \dot{\sigma}(t)~\mathrm{d}t[/mm]

Nach der Grundgleichung der Mechanik sind Kraft [mm]F[/mm] und Beschleunigung [mm]a[/mm] aber proportional:

[mm]F = m a[/mm]

Die Masse [mm]m[/mm] ist der konstante Proportionalitätsfaktor. Zum Zeitpunkt [mm]t[/mm] ist also einerseits

[mm]F = \left( \Phi \circ \sigma \right)(t)[/mm]

und andererseits

[mm]F = m \cdot \alpha(t) = m \cdot \ddot{\sigma}(t)[/mm]

Im obigen Integral geht es dann weiter:

[mm]W = \int_{t=0}^{t=t_0}~m \cdot \ddot{\sigma}(t) \cdot \dot{\sigma}(t)~\mathrm{d}t = m \int_{t=0}^{t=t_0}~\dot{\varphi}(t) \cdot \varphi(t)~\mathrm{d}t[/mm]

Die Substitution [mm]v = \varphi(t) , \ \mathrm{d}v = \dot{\varphi}(t) \, \mathrm{d}t[/mm] mit den neuen Grenzen [mm]v=0[/mm] und [mm]v=v_0[/mm] führt schließlich auf

[mm]W = \int_{v=0}^{v=v_0}~v~\mathrm{d}v = \frac{1}{2} \left[ v^2 \right]_{v=0}^{v=v_0} = \frac{1}{2} \, {v_0}^2[/mm]


So müßte man das wohl streng nach den Regeln der Mathematik rechnen. Da bekommt man langsam Verständnis für den kurzen Weg der Physiker, auch wenn da viel Pfusch im Spiel ist. Ich hoffe, ich konnte dir beim Verständnis der Sache behilflich sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de