www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Übertragungsprinzip
Übertragungsprinzip < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übertragungsprinzip: Erklärung
Status: (Frage) beantwortet Status 
Datum: 09:50 Di 08.02.2011
Autor: SolRakt

Hallo. Ich hab schon lange gegoogelt, finde aber nichts vernünftiges dazu. Kann mir vllt jemand erklären, was es damit auf sich hat? Danke vielmals. Gruß

        
Bezug
Übertragungsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Di 08.02.2011
Autor: schachuzipus

Hallo SolRakt,


> Hallo. Ich hab schon lange gegoogelt, finde aber nichts
> vernünftiges dazu. Kann mir vllt jemand erklären, was es
> damit auf sich hat? Danke vielmals. Gruß

Da du sinnvollerweise gar nichts über den Zusammenhang preisgibst, in dem der Begriff auftaucht, ist die Hilfe umso leichter ...

Da du im Forum reelle Analysis postest, habe ich in google "Übertragungsprinzip reelle Analysis" eingetippt und folgendes pdf gefunden.

http://www.google.de/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Funibe.ch.boegli.tk%2FMathematik%2FAnalysis%2FAnalysis1.pdf&rct=j&q=%C3%BCbertragungsprinzip%20reelle%20analysis&ei=qAVRTbaDAcnsOb7r7O0H&usg=AFQjCNGbIe0PplMtAAmMdqwJTdpbph5oXQ&cad=rja

Dort unter 4. Stetige Funktionen steht was dazu.


Gruß

schachuzipus


Bezug
                
Bezug
Übertragungsprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Di 08.02.2011
Autor: SolRakt

Sry, ich dachte, dass es nur dieses eine Übertragungsprinzip gibt. xD

Hmm..so ganz verstehe ich das trotzdem nicht. Heißt das, dass man "alles" (also Stetigkeit) auch mit Folgen benutzen darf?

Danke.

Bezug
                        
Bezug
Übertragungsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Di 08.02.2011
Autor: fred97


> Sry, ich dachte, dass es nur dieses eine
> Übertragungsprinzip gibt. xD
>  
> Hmm..so ganz verstehe ich das trotzdem nicht. Heißt das,
> dass man "alles" (also Stetigkeit) auch mit Folgen benutzen
> darf?

Vielleicht hilft das:

Sei A [mm] \subset \IR^n [/mm] und f:A [mm] \to \IR^m [/mm] eine Funktion und [mm] x_0 \in [/mm] A

1. Wir nennen f   " [mm] \varepsilon-\delta- [/mm] stetig" in [mm] x_0 :\gdw [/mm]

    zu jedem  [mm] \varepsilon> [/mm] 0 gibt es eib [mm] \delta [/mm] > 0 mit:  x [mm] \in [/mm] A , [mm] $||x-x_0||> \deta \Rightarrow ||f(x)-f(x_0)||< \varepsilon. [/mm]

2. Wir nennen f "folgenstetig" in [mm] x_0 [/mm]   : [mm] \gdw [/mm]     für jede Folge [mm] (x_n) [/mm] in A mit [mm] x_n \to x_0 [/mm] gilt: [mm] f(x_n) \to f(x_0) [/mm]


Das Übertragungsprizip sagt nun:

          f  ist " [mm] \varepsilon-\delta- [/mm] stetig" in [mm] x_0 \gdw [/mm]    f ist  "folgenstetig" in [mm] x_0 [/mm]

FRED


>  
> Danke.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de