www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - umformung mit nabla, div, usw.
umformung mit nabla, div, usw. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

umformung mit nabla, div, usw.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 So 09.05.2010
Autor: lannigan2k

Hallo,

ich habe ein kleines umforumngsproblem. habe es mir komponentenweise angesehn, aber ich komme nicht darauf.

also
[mm] \vec{u} [/mm] ist vektorfeld
[mm] \rho [/mm] ist ein skalares feld, also eine funktion nach [mm] \IR [/mm] (d.h. ja kein vektor)
p is wie [mm] \rho [/mm] ein skalares feld
[mm] \vec{b} [/mm] = [mm] \vec{b}(x(t),t) [/mm] also wie vektorfeld
[mm] \vec{e} [/mm] is ein fester vektor

jetzt soll folgendes gelten:

[mm] -div(\rho\vec{u})\vec{u}\circ\vec{e}-\rho(\vec{u}\circ\nabla)\vec{u}\circ\vec{e}-(\nabla p)\circ\vec{e}+\rho\vec{b}\circ\vec{e} [/mm]
=
[mm] -div(p\vec{e}+\rho\vec{u}(\vec{u}\circ\vec{e}))+\rho\vec{b}\circ\vec{e} [/mm]

naja und das krieg ich nicht hin.

es gilt ja
[mm] div(\rho\vec{u})=\rho div(\vec{u})+\vec{u}\circ\nabla\rho [/mm]

und

wie geht das [mm] (\vec{u}\circ\vec{e}) [/mm] überhaupt in die divergenz rein?
das hab ich mal versucht komponentenweise auszurechnen, aber das führt zu nix.

klar ist doch auch dass
[mm] (\nabla p)\circ\vec{e}=div(p \vec{e}) [/mm] weil e ja konstanter vektor ist

also bliebe noch zu zeigen:

[mm] -div(\rho\vec{u})\vec{u}\circ\vec{e}-\rho(\vec{u}\circ\nabla)\vec{u}\circ\vec{e} [/mm]
=
[mm] -div(\rho\vec{u}(\vec{u}\circ\vec{e})) [/mm]

richtig?

und genau das macht keinen sinn, meiner meinung nach

habe auch rausgefunden, dass
[mm] (\vec{u}\circ\nabla)\vec{u}\circ\vec{e}=(\vec{u}\circ\vec{e})div(\vec{u}) [/mm]

aber dann ist [mm] (\vec{u}\circ\vec{e}) [/mm] wieder außerhalb der div

oh mann ich komm nicht weiter

kann jemand helfen? is so ein rumgeschuppse mit den operatoren

danke im voraus,
lannigan


        
Bezug
umformung mit nabla, div, usw.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 So 09.05.2010
Autor: mathfunnel

Hallo lannigan,

Du hast selbst herausgefunden, dass
[mm] $\nabla\cdot(\rho\vec{u})\vec{u}\cdot\vec{e}+\rho(\vec{u}\cdot\nabla)\vec{u}\cdot\vec{e} [/mm] = [mm] \nabla\cdot(\rho\vec{u}(\vec{u}\cdot\vec{e}))$ [/mm]
zu zeigen ist.
Jetzt stellen wir fest, dass [mm] $\vec{u}\cdot\vec{e}$ [/mm] eine skalare Funktion ist und vereinfachen die Schreibweise mit der Definition [mm] $\varphi [/mm] := [mm] \vec{u}\cdot\vec{e}$: [/mm]
[mm] $\nabla\cdot(\rho\vec{u})\varphi+\rho(\vec{u}\cdot\nabla)\varphi [/mm] =  [mm] \nabla\cdot(\varphi\rho\vec{u})$ [/mm]
Es reicht offenbar diese Gleichung für beispielsweise den [mm] $\partial_x$- [/mm] Summanden zu prüfen:
Also, [mm] $\partial_x(\varphi\rho u_x) [/mm] = [mm] (\partial_x\varphi)\rho u_x [/mm] + [mm] \varphi(\partial_x\rho) u_x+ \varphi\rho (\partial_x u_x) [/mm] = [mm] \ldots$. [/mm] Das sollte nicht schwer sein.

Gruß mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de