www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - unabhängige gleichverteilte ZV
unabhängige gleichverteilte ZV < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unabhängige gleichverteilte ZV: Tipps
Status: (Frage) beantwortet Status 
Datum: 21:21 So 18.12.2011
Autor: Mathegirl

Aufgabe
[mm] (\Omega,P) [/mm] ist ein diskreter Wahrscheinlichkeitsraum und [mm] X_i:\Omega\to \Omega'_i, [/mm] i=1,...,n unabhängige Zufallsvariablen.

a) [mm] I\subset{1,2,...,n} [/mm] mit [mm] #I\ge [/mm] 2
Zeige: Die Zufallsvariablen [mm] X_i, i\in [/mm] I sind unabhängig.

[mm] b)g:\Omega'_1x...\Omega'_m\to \Omega^n (1\le [/mm] m<n) eine beliebige Abbildung.
Zeige: [mm] g(X_1,...,X_m), X_{m+1},...,X_n [/mm] sind unabhängig

(Tipp: Summieren sie über die Faser [mm] g^{-1}(y), y\in\Omega^n) [/mm]


Ich verstehe bei dieser Aufgabe nur Bahnhof. Könnt ihr mir vielleicht erklären was ich hier wie machen muss oder vielleicht einen Lösungsansatz posten?
Das wäre sehr nett!


MfG
Mathegirl

        
Bezug
unabhängige gleichverteilte ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 Mo 19.12.2011
Autor: luis52

Moin,

zu a) Hier ist zu zeigen: Wenn [mm] $X_{j_1},\dots,X_{j_k}$ [/mm] eine Auswahl von mindestens zwei Zufallsvariablen der Menge [mm] $\{X_1,\dots,X_n\}$ [/mm] ist, so sind auch diese Zufallsvariablen unabhaengig.

Zu zeigen ist also [mm] $P(X_{j_1}=x_{j_1},\dots,X_{j_k}=x_{j_k})=P(X_{j_1}=x_{j_1})\times\dots\times P(X_{j_k}=x_{j_k})$ [/mm] fuer alle [mm] $x_{j_1}\in\Omega_{j_1}',\dots,x_{j_k}\in\Omega_{j_k}'$ [/mm] ...

vg Luis

Bezug
                
Bezug
unabhängige gleichverteilte ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 19.12.2011
Autor: Mathegirl

Das verstehe ich irgendwie nicht.
ich weiß nicht wie ich folgendes zeigen muss:

> Zu zeigen ist also
> [mm]P(X_{j_1}=x_{j_1},\dots,X_{j_k}=x_{j_k})=P(X_{j_1}=x_{j_1})\times\dots\times P(X_{j_k}=x_{j_k})[/mm]
> fuer alle
> [mm]x_{j_1}\in\Omega_{j_1}',\dots,x_{j_k}\in\Omega_{j_k}'[/mm] ...

Kannst du mir das nochmal erklären? Ich habe schon mein Skript gewälzt aber ich verstehe es trotzdem noch nicht.


MfG
Mathegirl




Bezug
                        
Bezug
unabhängige gleichverteilte ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mo 19.12.2011
Autor: luis52


>  
> Kannst du mir das nochmal erklären? Ich habe schon mein
> Skript gewälzt aber ich verstehe es trotzdem noch nicht.
>  

Du musst ausnutzen, dass [mm] $X_1,\dots,X_n$ [/mm] unabhaengig sind.  Es gilt

$ [mm] P(X_{j_1}=x_{j_1},\dots,X_{j_k}=x_{j_k})=\sum P(X_{1}=x_1,\dots,X_{n}=x_{n}) [/mm] $, wobei sich  die Summe sich ueber alle [mm] $x_{j_r}$ [/mm] erstreckt, wo [mm] $j_r$ [/mm] nicht zu [mm] $j_1,\dots,j_k$ [/mm] gehoert.

Beispiel

[mm] $P(X_1=x_1,X_3=x_3)=\sum_{x_2,x_4} P(X_1=x_1,X_2=x_2,X_3=x_3,X_4=x_4)$. [/mm]

vg Luis





Bezug
                                
Bezug
unabhängige gleichverteilte ZV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 19.12.2011
Autor: Mathegirl

Wieso ist das jetzt die Summe? hattest du nicht vorher das Produkt?

Sorry, aber irgendwie steige ich bei der Aufgabe überhaupt nicht durch...tut mir echt leid!


mathegirl

Bezug
                                        
Bezug
unabhängige gleichverteilte ZV: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:31 Mo 19.12.2011
Autor: Mathegirl

Könnt ihr mir helfen die Aufgabe zuende zu bringen?
Ich würde es echt gerne verstehen!


MfG
mathegirl

Bezug
                                        
Bezug
unabhängige gleichverteilte ZV: Antwort
Status: (Antwort) fertig Status 
Datum: 22:22 Mo 19.12.2011
Autor: kamaleonti

Hallo mathegirl,
> Wieso ist das jetzt die Summe? hattest du nicht vorher das Produkt?

luis schrieb:

> $ [mm] P(X_1=x_1,X_3=x_3)=\sum_{x_2,x_4} P(X_1=x_1,X_2=x_2,X_3=x_3,X_4=x_4) [/mm] $.

Hierbei sind [mm] x_1 [/mm] und [mm] x_3 [/mm] fest. Bei der Summe auf der rechten Seite sind [mm] x_1 [/mm] und [mm] x_3 [/mm] immer noch fest (klar!) und die Werte der anderen Zufallsvariablen [mm] X_2 [/mm] und [mm] X_4 [/mm] sind für die Wahrscheinlichkeit [mm] P(X_1=x_1,X_3=x_3) [/mm] im wahrsten Sinne des Wortes egal. Deswegen kann man die Partition nehmen, die aus allen elementaren Kombinationen der Werte von [mm] X_2 [/mm] und [mm] X_4 [/mm] besteht.
Nach der Formel der totalen Wahrscheinlichkeit folgt dann obige Formel.

Das funktioniert ganz allgemein mit der von luis angegebenen Formel. Bei dieser muss du auf der rechten Seite nur noch die Def. der Unabhängigkeit anwenden.
Dann steht es schon fast da.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de