www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - unabhängigkeit
unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 23.11.2010
Autor: emulb

Aufgabe
Es seien [mm] a_{1},...,a_{m} \in \IR^n [/mm] und es sei [mm] b_{k} [/mm] = [mm] \summe_{\nu=1}^{k}a\nu [/mm] für k= 1,...,m.

Zeige: Die Vektoren [mm] a_{1},...,a_{m} [/mm] sind genau dann linear unabhängig, wenn die Vektoren [mm] b_{1},...,b_{m} [/mm] linear unabhängig sind.

soll ich es als zeilen und spaltenvektor darstellen und dann die abhängigkeit testen? oder irgendwie gleichsetzen?

        
Bezug
unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Di 23.11.2010
Autor: ilfairy

Hallo emulb!

Ich hab eine Frage zu deiner Summe.
Meintest du:
[mm]\sum_{v=1}^{k}a*v[/mm]
oder
[mm]\sum_{v=1}^{k}a_v[/mm]

Schönen Abend noch!

Bezug
                
Bezug
unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Di 23.11.2010
Autor: emulb

das zweite

Bezug
        
Bezug
unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Do 25.11.2010
Autor: Marc

Hallo,

> Es seien [mm]a_{1},...,a_{m} \in \IR^n[/mm] und es sei [mm]b_{k}[/mm] =
> [mm]\summe_{\nu=1}^{k}a_\nu[/mm] für k= 1,...,m.

Die Aufgabenstellung korrekt abzutippen bzw. nachträglich zu verbessern, erhöht die rechtzeitige Antwortwahrscheinlichkeit.

> Zeige: Die Vektoren [mm]a_{1},...,a_{m}[/mm] sind genau dann linear
> unabhängig, wenn die Vektoren [mm]b_{1},...,b_{m}[/mm] linear
> unabhängig sind.
>  soll ich es als zeilen und spaltenvektor darstellen und
> dann die abhängigkeit testen? oder irgendwie gleichsetzen?

Die Vektoren [mm] $v_1,\ldots,v_m$ [/mm] sind linear unabhängig genau dann, wenn die folgende Vektorgleichung/das zugrundeliegende Gleichungssystem nur eine einzige Lösung hat: [mm] $\lambda_1 v_1+\ldots+\lambda_m v_m=0$. [/mm]

Für die [mm] "$\Rightarrow$"-Richtung [/mm] des Beweises nimm also die Vektorgleichung [mm] $\lambda_1 b_1+\ldots+\lambda_m b_m=0$ [/mm] her, setze die Definitionen der [mm] $b_\nu$ [/mm] ein und forme die Vektorgleichung zu einer Linearkombination der [mm] $a_i$ [/mm] um, von denen du ja voraussetzt darfst, dass sie linear unabhängig sind und deswegen ihre Koeffizienten Null sein müssen. Das liefert dir ein lineare Gleichungssystem in den [mm] $\lambda_i$, [/mm] dass du eindeutig lösen kannst.

Für die [mm] "$\Leftarrow$"-Richtung [/mm] stelle zunächst jeden Vektor [mm] $a_i$ [/mm] mit Hilfe der [mm] $b_\nu$ [/mm] dar; es gilt ja:
[mm] $b_1=a_1$ $\Rightarrow\ a_1=b_1$ [/mm]
[mm] $b_2=a_1+a_2$ $\Rightarrow\ a_2=b_2-a_1=b_2-b_1$ [/mm]
[mm] $\vdots$ [/mm]
Jetzt kannst du lineare Unabhängigkeit der [mm] $a_i$ [/mm] genauso zeigen wie in der [mm] "$\Rightarrow$"-Richtung. [/mm]

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de