www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - unbestimmte integrale Berechne
unbestimmte integrale Berechne < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmte integrale Berechne: Ansatz gesucht
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 14.01.2014
Autor: Killercat

Aufgabe 1
Berechnen sie die folgenden unbestimmten Integrale

[m] \int \frac {arctan(x)} {x^2} dx [/m]

Aufgabe 2
[m] \int x cos^2(x)dx [/m]

Guten tag,

ich bräuchte Hilfe bei den beiden Aufgaben, da mir irgendwie jeglicher Ansatz fehlt. Ich hatte für die 1 die Idee das ganze mit partieller Integration zu lösen, damit komme ich aber irgendwie nicht weiter. Für die 2 fehlt mir bisher noch jede Idee irgendwie. Es wäre nett, wenn mir jemand einen Ansatz liefern könnte.

Vielen dank schonmal für die Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unbestimmte integrale Berechne: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Di 14.01.2014
Autor: schachuzipus

Hallo,

> Berechnen sie die folgenden unbestimmten Integrale

>

> [mm]\int \frac {arctan(x)} {x^2} dx[/mm]
> [mm]\int x cos^2(x)dx[/mm]
> Guten
> tag,

>

> ich bräuchte Hilfe bei den beiden Aufgaben, da mir
> irgendwie jeglicher Ansatz fehlt. Ich hatte für die 1 die
> Idee das ganze mit partieller Integration zu lösen, damit
> komme ich aber irgendwie nicht weiter.

Die Idee ist gut!

Mache zunächst eine partielle Integration [mm]\int{\underbrace{\frac{1}{x^2}}_{=f'(x)}\cdot{}\underbrace{\atan(x)}_{=g(x)} \ dx} \ = f(x)g(x)-\int{f(x)g'(x) \ dx}[/mm]

Im verbleibenden Integral hilft eine Substitution - du wirst drauf kommen ...

> Für die 2 fehlt mir
> bisher noch jede Idee irgendwie.

Hier ist es ganz nützlich, [mm]\cos^2(x)[/mm] umzuschreiben in [mm]\frac{1}{2}\cdot{}\left(1+\cos(2x)\right)[/mm]

Dann den Integranden ausmultiplizieren, das Integral in die Summe zweier Integrale spalten.

Eines ist trivial, für das andere könnte wieder partielle Integration helfen ...

> Es wäre nett, wenn mir
> jemand einen Ansatz liefern könnte.

>

> Vielen dank schonmal für die Hilfe
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
                
Bezug
unbestimmte integrale Berechne: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:05 Di 14.01.2014
Autor: Killercat

Vielen dank, habs hingekriegt :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de