www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - uneigentliche Integral,Frage
uneigentliche Integral,Frage < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integral,Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Di 17.04.2012
Autor: sissile

Aufgabe
a [mm] \in \IR [/mm] beliebig
b > 0
[mm] \int_1^\infty \frac{t^a}{1+t^b} [/mm] dt > [mm] \int_1^\infty \frac{t^{a-b}}{2} [/mm] dt
Für a-b>-1 divergiert das Integral
<=> a>-1+b
a hat also eine untere SChranke für das das Integral divergiert


wie könnte man abschätzen, um eine obere schranke zu bekommen?

        
Bezug
uneigentliche Integral,Frage: anders
Status: (Antwort) fertig Status 
Datum: 17:31 Di 17.04.2012
Autor: HJKweseleit

Du hast herausbekommen, dass das Integral divergiert, wenn a > b-1 ist. Für a = b - 1 divergiert es ebenfalls, weil die Stammfunktion dann der ln ist. Das bedeutet aber, dass für alle (!) a [mm] \ge [/mm] b-1 das Integral divergiert, das heißt, wenn du a immer größer machst, divergiert es erst recht. Du kannst also gar kein großes a finden, bei dem auf einmal Konvergenz eintritt! Also gibt es keine obere Schranke für die Divergenz.

Vermutlich suchst du eine [mm] \red{untere} [/mm] Schranke dafür, dass das Integral divergiert. Wenn es für a [mm] \ge [/mm] b-1 divergiert, kann es ja trotzdem so sein, dass es für a = b-5 auch divergiert. Die Frage ist also: Konvergiert das Integral für alle a < b-1?


  [mm]\int_1^\infty \frac{t^a}{1+t^b}[/mm] dt < [mm]\int_1^\infty \frac{t^a}{t^b}[/mm] dt = [mm]\int_1^\infty t^{a-b}[/mm] dt.

Für a < b-1, also a=b-1-[mm]\epsilon [/mm] [mm] (\epsilon [/mm] > 0) erhält man für die rechte Seite [mm]\int_1^\infty t^{-1-\epsilon}[/mm] dt mit der Stammfunktion

F(t) = [mm] -\bruch{1}{\epsilon}t^{-\epsilon} [/mm] und damit für den Wert des Integrals [mm] -\bruch{1}{\epsilon}, [/mm] somit Konvergenz.




Bezug
                
Bezug
uneigentliche Integral,Frage: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:46 Di 17.04.2012
Autor: sissile

hallo, danke ;)

Ich hätte noch eine frage, bei dem selben Integral mit b <0!!

a $ [mm] \in \IR [/mm] $ beliebig
b < 0
$ [mm] \int_1^\infty \frac{t^a}{1+t^b} [/mm] $ dt < $ [mm] \int_1^\infty \frac{t^{a-b}}{2} [/mm] $ dt
-> konvergiert für a-b < -1
<=> a < -1 + b

Kann man dafür auch solch eine Abschätzung machen wie in deinen Post?
Weil da kann man ja nicht so einfach den 1 abschätzen, wenn man kleiner werden möchte .

Bezug
                        
Bezug
uneigentliche Integral,Frage: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 19.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de