www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliche Integrale
uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Do 20.03.2008
Autor: domenigge135

Hallo. Ich habe mal eine Frage. Kann mir bitte jmd. erklären, was genau ich unter einem uneigentlichen integral verstehe? Worin besteht der unterschied zu den bestimmten integralen???

        
Bezug
uneigentliche Integrale: Beispiel
Status: (Antwort) fertig Status 
Datum: 17:46 Do 20.03.2008
Autor: Loddar

Hallo domenigge!


Uneigentliche Integrale sind ein Spezialfall der bestimmten Integrale. Allerdings ergeben hier die Ausdrücke der Stammfunktion an einer oder beiden Integrationsgrenzen unbestimmte Ausdrücke.

Dies kann geschehen, indem die Stammfunktion an einer oder beiden Integrationsgrenzen nicht definiert ist. Oder einer der Grenzen ist ein unbestimmter Ausdruck wie z.B. [mm] $\infty$ [/mm] .

Beispiel:  [mm] $\integral_1^\infty{\bruch{1}{x^2} \ dx}$ [/mm] .

Die allgemeine Vorgehensweise ist jedenfalls, dass man diese Integrationsgrenze(n) durch eine Variable ersetzt und anschließend die entsprechende Grenzwertbetrachtung durchführt:

[mm] $$\integral_1^\infty{\bruch{1}{x^2} \ dx} [/mm] \ = \ [mm] \limes_{a\rightarrow\infty}\integral_1^a{\bruch{1}{x^2} \ dx} [/mm] \ = \ [mm] \limes_{a\rightarrow\infty}\left[ \ -\bruch{1}{x} \ \right]_1^a [/mm] \ = \ [mm] \limes_{a\rightarrow\infty}\left[ \ -\bruch{1}{a}-\left(-\bruch{1}{1}\right) \ \right] [/mm] \ = \ [mm] 1-\limes_{a\rightarrow\infty}\bruch{1}{a} [/mm] \ = \ 1-0 \ = \ 1$$

Gruß
Loddar


Bezug
                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Do 20.03.2008
Autor: domenigge135

Alles klar. Ich habe hier nämlich eine Aufgabe [mm] \integral_{2}^{\infty}\bruch{dx}{x(x-1)^2} [/mm] leider weiß ich überhaupt nichts damit anzufangen. Das mit dem limes finde ich ja jetzt ganz gut. Allerdings stört mich das dx im Zähler ein wenig!!!

Bezug
                        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Do 20.03.2008
Autor: abakus


> Alles klar. Ich habe hier nämlich eine Aufgabe
> [mm]\integral_{2}^{\infty}\bruch{dx}{x(x-1)^2}[/mm] leider weiß ich
> überhaupt nichts damit anzufangen. Das mit dem limes finde
> ich ja jetzt ganz gut. Allerdings stört mich das dx im
> Zähler ein wenig!!!

Hallo,

[mm]\integral_{2}^{\infty}\bruch{dx}{x(x-1)^2}[/mm]=[mm]\integral_{2}^{\infty}\bruch{1}{x(x-1)^2}dx[/mm]

ist es so besser?

Gruß Abakus


Bezug
                                
Bezug
uneigentliche Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Do 20.03.2008
Autor: domenigge135

Oh man bin ich blöd. Ist viel besser dankeschön :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de