www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - uneigentliches Integral?
uneigentliches Integral? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Integral?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Di 13.03.2007
Autor: ONeill

Hy!
Ich habe folgendes Integral, was ich berechnen soll:
[mm] A(u)=\int_{0}^{u} \left( \bruch{4x}{(x+1)^2} \right)\, [/mm] dx
Wenn ich das aufleite (partielle Integration) komme ich auf:
[mm] A(u)=\bruch{-4x}{(x+1)}+4*ln(x+1) [/mm]
Wenn u dann gegen +unendlich geht, dann geht laut meiner Rechnung auch A gegen unendlich. Ist das richtig, hatte eher ein uneigentliches Integral erwartet.

        
Bezug
uneigentliches Integral?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 13.03.2007
Autor: Herby

Hi,

im Zähler ist das x zuviel


Liebe Grüße
Herby

Bezug
        
Bezug
uneigentliches Integral?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Di 13.03.2007
Autor: Stefan-auchLotti


> Hy!
>  Ich habe folgendes Integral, was ich berechnen soll:
>  [mm]A(u)=\int_{0}^{u} \left( \bruch{4x}{(x+1)^2} \right)\,[/mm] dx
>  Wenn ich das aufleite (partielle Integration) komme ich
> auf:
>  [mm]A(u)=\bruch{-4x}{(x+1)}+4*ln(x+1)[/mm]
>  Wenn u dann gegen +unendlich geht, dann geht laut meiner
> Rechnung auch A gegen unendlich. Ist das richtig, hatte
> eher ein uneigentliches Integral erwartet.

[mm] $\bffamily \text{Hi,}$ [/mm]

[mm] $\bffamily \text{Also ich hab' dasselbe Ergebnis. Der Grenzwert existiert in der Tat nicht!}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
uneigentliches Integral?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Di 13.03.2007
Autor: ONeill

Mhh alles klar, Taschenrechner bestätigt das auch noch mal. Hab mich nur einbisschen gewundert, weil das in der Vergangenheit immer so war, dass bei solchen Aufgaben ein endlicher Flächeninhalt vorhanden war.
Danke!

Bezug
                
Bezug
uneigentliches Integral?: sehr seltsam
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 14.03.2007
Autor: Herby

Hi,

sorry, dass ich schon wieder nerve - wenn ich das angegebene Integral mit partieller Integration löse komme ich auch auf

[mm] I=\left(4x*(-\bruch{1}{x+1})\right)-\integral{-\bruch{4}{(x+1)}\ dx}=-\bruch{4x}{x+1}+4*ln(x+1) [/mm]


Wenn ich eine Partialbruchzerlegung mache, komme ich auf:

4x=A*x+A+B also auf A=4 und B=-4

das gibt dann:

[mm] I=\integral{\bruch{4}{x+1}\ dx}-\integral{\bruch{4}{(x+1)^2}\ dx} [/mm]

[mm] I=4*ln(x+1)+\bruch{4}{(x+1)} [/mm]


so, nun ist zum einen in Vorzeichen falsch und das x im Zähler verschwunden - und nu [kopfkratz3]

meine Formelsammlung und mein Taschenrechner bestätigen übrigens Ergebnis 2 - daher meine Mitteilung gestern.


Liebe Grüße
Herby

Bezug
                        
Bezug
uneigentliches Integral?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mi 14.03.2007
Autor: angela.h.b.

Hallo,

festzustellen ist immerhin schonmal, daß die Ableitung beider Stammfunktionen das Gewünschte ergibt, nämlich [mm] \bruch{4x}{(x+1)^2}. [/mm]

Bei Variation1 - mit partieller Integration -

haben wir

[mm] A(u)=(-\bruch{4x}{x+1}+4\cdot{}ln(x+1))|_0^u [/mm]
[mm] =-\bruch{4u}{u+1}+4\cdot{}ln(u+1). [/mm]

Bei Variation 2 - PBZ - bekommt man

[mm] A(u)=(4\cdot{}ln(x+1)+\bruch{4}{(x+1)})|_0^u [/mm]
[mm] =4\cdot{}ln(u+1)+\bruch{4}{(u+1)}-4 [/mm]
[mm] =4\cdot{}ln(u+1)-\bruch{4u}{u+1} [/mm]

Das ist dasselbe wie oben
==> Welt in Ordnung!

Gruß v. Angela



Bezug
                                
Bezug
uneigentliches Integral?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Mi 14.03.2007
Autor: Herby

Hallo Angela [winken]


schön - von dir kann man immer wieder etwas lernen ;-)



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de