www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliches integral
uneigentliches integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches integral: richtig?
Status: (Frage) beantwortet Status 
Datum: 19:56 So 27.01.2008
Autor: Luke1986

Aufgabe
[mm] \integral_{0}^{\bruch{\pi}{4}} \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } dx [/mm]

ich habe das ganze so versucht:

kritische Stelle: [mm] x=0 [/mm]
  
Heuristik: fuer   [mm] x\to[/mm]  [mm] 0 [/mm]
     [mm] \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } \simeq \bruch{x^{\bruch{1}{3}}*1}{x^2*x^{\bruch{1}{3}}} \simeq \bruch{1}{x^2} [/mm]

[mm] \Rightarrow [/mm] vermutung: konvergent

Also wende Majorantenkrit an:
  [mm] \left| f(x) \right| [/mm] = [mm] \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } [/mm]                       mit [mm] 0
mit dem Mittelwertsatz habe ich abgeschätzt:

[mm] [mm] sinx^{\bruch{1}{3}} \ge cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}} [/mm]
[mm] e^{-x} \le [/mm] 1

[mm] \le \bruch{(tan^{4}x)^{\bruch{1}{3}}*1}{x^2*cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}}} [/mm]
es gilt: [mm] \bruch{tanx}{x} [/mm] = 1 für x [mm] \to [/mm] 0

[mm] \le \bruch{{(\bruch{tan^{4}x}{x})^{\bruch{1}{3}}}*x^{\bruch{1}{3}}}{{x^2*cos{\bruch{\pi}{4}}*x^{\bruch{1}{3}}}} [/mm]

ein therm gegen 1 das [mm] x^{\bruch{1}{3}} [/mm] kürzt sich weg  dann hab ich im prinzip noch [mm] \bruch{1}{x^2} [/mm] und eine Konstante die in Bezug auf die Konvergenz vernachlässigt werden kann.
[mm] \bruch{1}{x^2} [/mm] ist eine standartmajorante und KOnvergent...
ich bin mir aber nicht sicher ob ich das so machen kann???

gruß Lukas

        
Bezug
uneigentliches integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 27.01.2008
Autor: Somebody


> [mm][mm]\integral_{0}^{\bruch{\pi}{4}} \bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} }[/mm] dx [mm][/mm][/mm]

ich habe das ganze so versucht:

kritische Stelle: [mm]x=0[/mm]
  
Heuristik: fuer   [mm]x\to[/mm]  [mm]0[/mm]
[mm]\bruch{{({tan^4}x)^{\bruch{1}{3}}}*e^{-x}}{{x^2*sinx^{\bruch{1}{3}}} } \simeq \bruch{x^{\bruch{1}{3}}*1}{x^2*x^{\bruch{1}{3}}} \simeq \bruch{1}{x^2}[/mm]

[mm]\Rightarrow[/mm] vermutung: konvergent

Kann ich nicht glauben, denn in erster Näherung, für [mm] $x\rightarrow [/mm] 0+$, ist ja sowohl [mm] $\tan(x)=x+o(x)$ [/mm] als auch und [mm] $\sin(x)=x+o(x)$ [/mm] (d.h. beide sind in erster Näherung linear in $x$). Der Faktor [mm] $e^{-x}$ [/mm] ist für die Konvergenz wegen [mm] $\lim_{x\rightarrow 0+}e^{-x}=1$ [/mm] für die Frage der Konvergenz dieses Integrals an der unteren Grenze $0$ ganz unerheblich. Was dann noch bleibt hat die Form [mm] $\frac{(x+o(x))^{4/3}}{x^2\cdot (x+o(x))^{1/3}}=\frac{x^{4/3}\cdot(1+o(1))^{4/3}}{x^2\cdot x^{1/3}\cdot(1+o(1))^{1/3}]}=\frac{1}{x}\cdot (1+o(1))^2$. [/mm] Das heisst: Dein Integrand verhält sich für den Grenzübergang [mm] $x\rightarrow [/mm] 0+$ asymptotisch wie [mm] $\frac{1}{x}$. [/mm] Aber das Integral [mm] $\int_0^b\frac{1}{x}\;dx$ [/mm] existiert an der unteren Grenze nicht: also würde ich behaupten wollen, dass Dein Integral (an der unteren Grenze) gegen [mm] $+\infty$ [/mm] divergiert.


Bezug
        
Bezug
uneigentliches integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 27.01.2008
Autor: leduart

Hallo
Zusätzlich zu somebody
Warum ist [mm] 1/x^2 [/mm] eine konvergente Majorante? doch wohl für x gegen [mm] \infty, [/mm] nicht für x gegen 0!
(aber [mm] 1/x^2 [/mm] ist ja eh falsch.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de