www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - unendlich viele Primzahlen
unendlich viele Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendlich viele Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:35 Mi 30.12.2009
Autor: Unk

Aufgabe
Zeige: [mm] \forall [/mm] n>2  gibt es eine p Primzahl mit n<p<n!.

Hallo,

also ich habe das bereits bewiesen, indem ich einfach das Bertrandsche Postulat zitiert habe, denn [mm] n!\geq [/mm] 2n für n>2. Damit ist es klar.

Allerdings soll man das auch ohne hinbekommen. Mir ist bloß noch nicht so richtig klar wie. Ich wollte erst die Primfaktorzerlegungen von n und n! betrachten und dann sagen, dass in n! ein Primfaktor >n vorkommt, was natürlich nicht stimmt, also geht das nicht.

Wie macht man das anders?



        
Bezug
unendlich viele Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:03 Mi 30.12.2009
Autor: Gonozal_IX

Hiho,

hier hilft dir das []Lemma von Euklid weiter.

MFG
Gono.

Bezug
                
Bezug
unendlich viele Primzahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 05:17 Mi 30.12.2009
Autor: Unk


> Hiho,
>  
> hier hilft dir das
> []Lemma von Euklid
> weiter.
>  
> MFG
>  Gono.

Naja nicht so recht. Ich soll das beweisen, ohne dass ich weiß, dass es unendlich viele Primzahlen gibt, denn das ist die Folgerung, die ich aus meiner Behauptung ziehen soll, was ja auch klar ist.
Muss ich nur noch die Behauptung beweisen, was mir nicht gelingen will, weil wenn n aus endlich vielen Primzahlen besteht in n! keine Primzahl vorkommt, die größer als n ist.  


Bezug
        
Bezug
unendlich viele Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Mi 30.12.2009
Autor: Al-Chwarizmi


> Zeige: [mm]\forall[/mm] n>2  gibt es eine p Primzahl mit n<p<n!.
>  Hallo,
>  
> also ich habe das bereits bewiesen, indem ich einfach das
> Bertrandsche Postulat zitiert habe, denn [mm]n!\geq[/mm] 2n für
> n>2. Damit ist es klar.
>  
> Allerdings soll man das auch ohne hinbekommen. Mir ist
> bloß noch nicht so richtig klar wie. Ich wollte erst die
> Primfaktorzerlegungen von n und n! betrachten und dann
> sagen, dass in n! ein Primfaktor >n vorkommt, was
> natürlich nicht stimmt, also geht das nicht.
>
> Wie macht man das anders?


Hallo Unk,

betrachte einmal die Zahl n!-1 und ihre Teiler.
Entweder ist n!-1 eine Primzahl - dann hätten
wir also schon die gesuchte Primzahl zwischen
n und n! (denn für n>2 ist stets n<n!-1<n!) -
oder aber n!-1 hat einen kleinsten echten Prim-
teiler p . Nun kann man aber zeigen, dass [mm] p\le [/mm] n
nicht in Frage kommt, weil dann n! mod p =0
und folglich (n!-1) mod p [mm] =p-1\not=0 [/mm] sein müsste,
was im Widerspruch dazu steht, dass p [mm] \mid [/mm] (n!-1) .
Also muss p>n sein (und natürlich auch p<n!) .

LG    Al-Chw.

Bezug
                
Bezug
unendlich viele Primzahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 30.12.2009
Autor: Unk

Das finde ich gut.
Nur warum muss p unbedingt der kleinste echte Primteiler sein? Es reicht doch das für einen beliebigen Primteiler zu zeigen, oder nicht? Im Prinzip ist doch sogar die Fallunterscheidung nicht notwendig, der Primteiler kann also auch unecht sein, also gleich n!-1. Oder ändert das irgendwas an der Richtigkeit?

Bezug
                        
Bezug
unendlich viele Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Mi 30.12.2009
Autor: reverend

Hallo Unk,

> Das finde ich gut.
>  Nur warum muss p unbedingt der kleinste echte Primteiler
> sein? Es reicht doch das für einen beliebigen Primteiler
> zu zeigen, oder nicht?

Klar. Alle Primteiler von (n!-1) sind >n.

> Im Prinzip ist doch sogar die
> Fallunterscheidung nicht notwendig, der Primteiler kann
> also auch unecht sein, also gleich n!-1. Oder ändert das
> irgendwas an der Richtigkeit?

Nein, auch das ist ein möglicher Fall. Also ist (n!-1) entweder selbst prim oder hat nur Primteiler p mit n<p<n!.

lg
reverend

Bezug
                        
Bezug
unendlich viele Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:09 Mi 30.12.2009
Autor: Al-Chwarizmi


> Das finde ich gut.
>  Nur warum muss p unbedingt der kleinste echte Primteiler
> sein? Es reicht doch das für einen beliebigen Primteiler
> zu zeigen, oder nicht? Im Prinzip ist doch sogar die
> Fallunterscheidung nicht notwendig, der Primteiler kann
> also auch unecht sein, also gleich n!-1. Oder ändert das
> irgendwas an der Richtigkeit?


Du hast Recht. Dass ich meine Idee noch nicht in der
einfachst möglichen Form präsentiert habe, liegt einfach
daran, dass ich sie quasi "in statu nascendi" übermittelt
habe.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de