www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - unendlich viele lös. q^(2)=-1
unendlich viele lös. q^(2)=-1 < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendlich viele lös. q^(2)=-1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:14 Mi 28.09.2011
Autor: kushkush

Aufgabe
a) Man zeige, dass es unendlich viel q in [mm] $\textbf{H} [/mm] = [mm] \textbf{R} +\textbf{R}i [/mm] + [mm] \textbf{R}j+\textbf{R}k$ [/mm] gibt mit [mm] $q^{2}=-1$ [/mm]

b) Sei nun
[mm] u=\frac{1}{2}(1+i+j+k)$, [/mm] Man zeige dass [mm] $\textbf{Z}u+\textbf{Z}i+\textbf{Z}j+\textbf{Z}k$ [/mm] ein Unterring von [mm] $\textbf{H}$ [/mm] ist.

Hallo,

a) Es  ist  [mm] $\textbf{H}= \vektor{u & v \\ -\overline{v} & \overline{u}}$ [/mm] und es gelte $u := a+bi , v= c + d i, $

Dann erhält man durch [mm] $\vektor{-1&0\\0&-1}=\vektor{u&v\\-\overline{v}&\overline{u}}\vektor{u&v\\-\overline{v}&\overline{u}} [/mm] = [mm] \vektor{u^{2}-v\overline{v} & uv + v\overline{u} \\ -u\overline{v} - \overline{u}\overline{v} & -v\overline{v} + \overline{u}^{2}}$ [/mm]

also :

$1: -1 = [mm] u^{2}-v\overline{v} [/mm] = [mm] a^{2}+2abi [/mm] - [mm] b^{2} [/mm] - [mm] c^{2}-d^{2}$ [/mm]
$2: [mm] \overline{uv} [/mm] =  [mm] u\overline{v} \gdw \overline{u} [/mm] = -u$
$3:  -1 = [mm] -(|v|^{2})+\overline{u}^{2}$ [/mm] mit $2 [mm] \Rightarrow [/mm] -1 = [mm] u^{2} [/mm] - [mm] |v|^{2}$ [/mm] also wie  (1)



b)
[mm] $\forall [/mm] a,b [mm] \in \textbf{Z}u+\textbf{Z}i +\textbf{Z}k+\textbf{Z}j, [/mm] a:= xu+yi+vk+wj , b:= qu+ri+sk+tj:$

1. $a-b = ((x-q)u+(y-r)i+(v-s)k+(w-t)j) [mm] \in \textbf{Z}u+\textbf{Z}i +\textbf{Z}k+\textbf{Z}j$ [/mm]

2. sei $ab= (xu+yi+vk+wj)(qu+ri+sk+tj)$ dann lasse ich die Terme ohne u weg da diese dargestellt werden können und betrachte die Terme mit u:

$(jquw + jtux + kquv + ksux + [mm] qu^{2}x [/mm] + iquy + irux) = u(jqw+jtx+kqv+ksx+qux+iqy+irx)  $


dann nur noch [mm] $qu^{2}x$: [/mm]

[mm] $qu^{2}x [/mm] = qx(-1+i+j+k)$


also ist $ab [mm] \in \textbf{Z}u [/mm] + [mm] \textbf{Z}i +\textbf{Z}k+ \textbf{Z}j$ [/mm]




Stimmt das so?

Bin für jegliche Hilfestellung dankbar.




Gruss
kushkush

        
Bezug
unendlich viele lös. q^(2)=-1: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Mi 28.09.2011
Autor: Leopold_Gast

Erst einmal zu b).
Der Schluß in 2: ist nicht korrekt. [mm]v \neq 0[/mm] ist nicht vorausgesetzt.

Ich weiß nicht, was du über den Quaternionenkalkül weißt. Man kann

[mm]\operatorname{Im} \mathbb{H} = \mathbb{R} \operatorname{i} + \mathbb{R} \operatorname{j} + \mathbb{R} \operatorname{k}[/mm]

als [mm]\mathbb{R}[/mm]-Vektorraum mit [mm]\mathbb{R}^3[/mm] identifizieren und für [mm]x,y \in \operatorname{Im} \mathbb{H}[/mm] in kanonischer Weise das Standardskalarprodukt [mm]\langle x,y \rangle[/mm] und das Vektorprodukt [mm]x \times y[/mm] übernehmen. Dann gilt

[mm]xy = - \langle x,y \rangle + x \times y \, ; \ \ x,y \in \operatorname{Im} \mathbb{H}[/mm]

Speziell für [mm]x=y=q[/mm] folgt:

[mm]q^2 = - \langle q,q \rangle + q \times q = - \langle q,q \rangle[/mm]

Daher gilt für [mm]q \in \operatorname{Im} \mathbb{H}[/mm]

[mm]q^2 = -1 \ \ \Leftrightarrow \ \ \langle q,q \rangle = 1[/mm]

Damit sind alle [mm]q \in \operatorname{Im} \mathbb{H}[/mm], die auf der Einheitssphäre liegen, Lösungen dieser Gleichung. Jetzt wäre noch zu überlegen, daß das alle Lösungen sind.

Auf dieses Ergebnis solltest du auch mit deiner Rechnung in [mm]a,b,c,d[/mm] kommen:

[mm]q^2 = -1 \ \ \Leftrightarrow \ \ a=0 \, , \ \ b^2 + c^2 + d^2 = 1[/mm]

Bezug
                
Bezug
unendlich viele lös. q^(2)=-1: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:12 Mi 28.09.2011
Autor: kushkush

Hallo Leopold,


bei a)
0. [mm] Im(a^{2}+2abi [/mm] - [mm] b^{2}) [/mm] = 0 [mm] \Rightarrow [/mm] ab = 0
1. [mm] $(u+\overline{u}) [/mm] = 2a $
2.$a=0 [mm] \Rightarrow u^{2}- |v|^{2} [/mm] = [mm] -b^{2}-c^{2}-d^{2} [/mm] = -1 [mm] \gdw b^{2}+y^{2}+d^{2} [/mm] = 1$
3. $b=0, d [mm] \in [/mm] [0,1] [mm] \Rightarrow [/mm] c = [mm] (1-d^{2})^{1/2} \in [/mm] [0,1]$

also gibt es überabzählbar viele $q [mm] \in \textbf{H}$ [/mm] mit [mm] $q^{2}=-1$ [/mm]

gibt es bei b) eine Alternative zu der aufwändigen Rechnung ?


>

Vielen Dank .


Gruss
kushkush

Bezug
                        
Bezug
unendlich viele lös. q^(2)=-1: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 30.09.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de