www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - unendliche Reihe
unendliche Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche Reihe: limes einer Reihe
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 20.02.2007
Autor: jennylein_18

Aufgabe
[mm] \summe_{k=o}^{\infty} [/mm] k*0.3^|k|

Schönen guten Abend!
Es wäre super, wenn mir jemand helfen könnte, muss diese Aufgabe lösen, um einen Schein in Stochastik zu bekommen. Muss einen Erwartungswert berechnen und daraus folgt obige Aufgabe.
Ich habe keine Ahnung, ob es einen Grenzwert gibt und wenn ja, wie man ihn brechnet. Man müsste eine Majorante finden um zu zeigen, dass es keinen Grenzwert gibt, aber ich wüsste nicht welche...
Wäre super, wenn jemand helfen könnte.
danke, jenny
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unendliche Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:02 Di 20.02.2007
Autor: Jorgi

Huhu :)

meinst du diese Reihe : [mm]\summe_{k=0}^{\infty}k\cdot(0.3)^k[/mm] ?

wenn ja, dann würd ich sagen Wurzelkriterium benutzen, um zu zeigen, dass sie kovergiert

[mm]\wurzel[k]{a_k} = \wurzel[k]{k\cdot(0.3)^^k} = \wurzel[k]{k} \cdot \wurzel[k]{(0.3)^k} = \wurzel[k]{k}\cdot (0.3) \longrightarrow 1 \cdot 0.3 < 1[/mm]

Bezug
                
Bezug
unendliche Reihe: danke schonmal
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 Di 20.02.2007
Autor: jennylein_18

Hallo!

Danke schonmal für den Tipp, das heißt, es gibt einen Limes, jetzt brauche ich nur noch den genauen Wert dazu.

danke, jenny

Bezug
        
Bezug
unendliche Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 20.02.2007
Autor: Karl_Pech

Hallo jennylein_18,


> [mm]\summe_{k=o}^{\infty}[/mm] k*0.3^|k|


In meiner Formelsammlung steht für [mm]\left|x\right| < 1[/mm]:


[mm]\sum_{k=0}^{\infty}{kx^k}=\frac{x}{(1-x)^2}[/mm]


Wie man auf diese Formel kommt? Na ja, Man benutzt hierbei Methoden der Ableitung. Hab's jetzt mal versucht und komme auch auf die Formel, allerdings stört mich dabei ein Gleichheitszeichen:


Wir wissen, daß folgendes für [mm]\left|x\right| < 1[/mm] gilt:


[mm]\sum_{k=0}^{\infty}{x^k} =\frac{1}{1-x}.[/mm]


Leitet man auf beiden Seiten ab, erhält man:


[mm]\sum_{k=1}^{\infty}{kx^{k-1}} = \sum_{k=0}^{\infty}{(k+1)x^k}\mathop \mathrel{\textcolor{red}{=}}\left(\sum_{k=0}^{\infty}{kx^k}\right)+\sum_{k=0}^{\infty}{x^k}\gdw\sum_{k=0}^{\infty}{kx^k}=\frac{1}{(1-x)^2}-\frac{1}{1-x}=\frac{x}{(1-x)^2}[/mm]


Aber beim roten Gleichheitszeichen stört es mich, daß man unendliche Reihen doch nicht so einfach umordnen kann, sofern man nicht ausschließt, daß [mm]x[/mm] negativ werden kann? Außerdem stört es mich auch ein wenig, daß man hier beim ersten Schritt eine unendliche Reihe als eine Funktion betrachtet, die man ableiten kann. Aber bei dir ist ja [mm]x=0.3[/mm], also spielt da das rote Gleichheitszeichen keine Rolle.



Viele Grüße
Karl




Bezug
                
Bezug
unendliche Reihe: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:57 Do 22.02.2007
Autor: jennylein_18

oh, super, das hat mir schon viel geholfen. danke sehr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de