www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - unendliche reihe ableiten
unendliche reihe ableiten < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche reihe ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 09.06.2010
Autor: hawkingfan

Aufgabe
Ist
[mm] \bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)? [/mm]

Eine ganz blöde Frage: Kann man die Regel
(f+g)´=f´+g´ auch bei einer unendlichen Summen von Funktionen anwenden?
Müsste ja eigentlich gehen, denn es gilt:

[mm] \bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\bruch{d}{dx}\limes_{n\rightarrow\infty}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\bruch{d}{dx}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{d}{dx}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x) [/mm]

        
Bezug
unendliche reihe ableiten: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 16:42 Mi 09.06.2010
Autor: M.Rex

Hallo
Ja, du darfst das so tun.
Es gilt:
[mm] \left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x) [/mm]

Und ob n nun fest ist, oder gegen [mm] \infty [/mm] läuft, ist erstmal egal.

Voraussetzung ist natürlich, dass jedes [mm] f_{i}(x) [/mm] mindestens einmal differenzierbar ist.

Marius

Bezug
                
Bezug
unendliche reihe ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mi 09.06.2010
Autor: hawkingfan

Danke.
(Du hast natürlich Recht, ich habe mich die ganze Zeit vertippt: Ich wollte natürlich immer [mm] f_{i}, [/mm] statt f

Bezug
                
Bezug
unendliche reihe ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:26 Mi 09.06.2010
Autor: fred97


> Hallo
>  Ja, du darfst das so tun.


Nein, das darf man i.a. nicht

               https://matheraum.de/read?i=691310

FRED


>  Es gilt:
>  
> [mm]\left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x)[/mm]
>  
> Und ob n nun fest ist, oder gegen [mm]\infty[/mm] läuft, ist
> erstmal egal.
>  
> Voraussetzung ist natürlich, dass jedes [mm]f_{i}(x)[/mm]
> mindestens einmal differenzierbar ist.
>  
> Marius


Bezug
                
Bezug
unendliche reihe ableiten: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 17:27 Mi 09.06.2010
Autor: fred97


> Hallo
>  Ja, du darfst das so tun.

Nein, das darf man i.a. nicht:  https://matheraum.de/read?i=691310


FRED


>  Es gilt:
>  
> [mm]\left(\summe_{i=1}^{n}f_{i}(x)\right)^{'}=\summe_{i=1}^{n}f_{i}'(x)[/mm]
>  
> Und ob n nun fest ist, oder gegen [mm]\infty[/mm] läuft, ist
> erstmal egal.
>  
> Voraussetzung ist natürlich, dass jedes [mm]f_{i}(x)[/mm]
> mindestens einmal differenzierbar ist.
>  
> Marius


Bezug
        
Bezug
unendliche reihe ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 09.06.2010
Autor: fred97


> Ist
>  
> [mm]\bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)?[/mm]
>  Eine ganz blöde Frage: Kann man die Regel
>  (f+g)´=f´+g´ auch bei einer unendlichen Summen von
> Funktionen anwenden?




Nein ! Im allg. gilt das nicht. Schöne Gegenbeispiele findet man in jedem Analysisbuch (z.B. H. Heuser: Lehrbuch der Analysis, Teil 1, §102)

FRED

>  Müsste ja eigentlich gehen, denn es gilt:
>  
> [mm]\bruch{d}{dx}\summe_{i=1}^{\infty}f(x)=\bruch{d}{dx}\limes_{n\rightarrow\infty}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\bruch{d}{dx}\summe_{i=1}^{n}f(x)=\limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{d}{dx}f(x)=\summe_{i=1}^{\infty}\bruch{d}{dx}f(x)[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de