www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - unterbestimmtes Gleichungssyst
unterbestimmtes Gleichungssyst < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unterbestimmtes Gleichungssyst: Frage
Status: (Frage) beantwortet Status 
Datum: 22:52 Sa 15.01.2005
Autor: miss-marple

A =  [mm] \pmat{ 1 & 1 & -2 & -1 & 2 \\ 2 & -1 & -2 & 3 & -2 \\ 4 & 1 & -7 & -1 & 0 } [/mm] ,
[mm] \vec{b}= \pmat{ 1 \\ 2 \\ 3 } [/mm]

Weiß leider, auch nach der Vorlesung meines Dozenten nicht, wie ich im allgemeinen ein unterbestimmtes Gleichungssystemen lösen soll. Kann mir einer helfen? Danke.

Gruß
miss-marple

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
unterbestimmtes Gleichungssyst: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 So 16.01.2005
Autor: Christian

Hallo.

> Weiß leider, auch nach der Vorlesung meines Dozenten nicht,
> wie ich im allgemeinen ein unterbestimmtes
> Gleichungssystemen lösen soll. Kann mir einer helfen?

Naja,
prinzipiell behandelst Du dieses Gleichungssystem genauso wie jedes andere, indem du einfach den Gauß-Algorithmus drauf losläßt.
Dann hast Du bei einem unterbestimmten LGS logischerweise sowas ähnliches wie 4x+y-2z=5 in der kürzesten Zeile stehen. Dann setzt Du (in diesem Beispiel, in deinem analog) x und z oder jedenfalls 2 Variablen irgendwelche Parameter ein, z.B. x=r, z=s, dann ist y=5-4r+2s, und dann löst Du dein LGS ganz normal weiter. Dann kannst Du am Ende alle Lösungen in Abhängigkeit von diesen 2 Parametern (in deinem Fall werden es ebenfalls 2 sein müssen) angeben.
Ich hoffe, ich konnte helfen,

Gruß,
Christian

Bezug
                
Bezug
unterbestimmtes Gleichungssyst: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 So 16.01.2005
Autor: miss-marple

Hallo Christian,

danke für deine Hilfe. Hab´s gerechnet und ne Lösung rausbekommen, die ich  mit ner Probe bestätigt hab.

Gruß
miss-marple

Bezug
        
Bezug
unterbestimmtes Gleichungssyst: vielleicht einfacher
Status: (Antwort) fertig Status 
Datum: 17:28 So 16.01.2005
Autor: dominik

Vorschlag: Lösungsverfahren, wie es Christian19 erwähnt, aber an der Stelle der Parameter kann man direkt Lösungen wählen!  Also bei der erwähnten Gleichung 4x+y-2z=5: ich wähle "bequeme" Zahlen: zum Beispiel x=1, z=1 dann wird 4x+y-2z=5 zu 4+y-2=5, also y=3.
Wird eine andere Kombination gewählt, passen sich die andern Lösungen an. Der Grund liegt darin, dass ein unterbestimmtes Gleichungssystem mehr Unbekannte als Gleichungen hat und deshalb keine eindeutige Lösung aufweist.

Viele Grüsse
dominik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de