www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - untervektorraum
untervektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

untervektorraum: aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:50 Fr 06.05.2005
Autor: woody

hi
wir befassen uns gerade mit untervektorräumen in der matrizenrechnung. jedoch habe ich nix verstanden. also die frage, was sind untervektorräume und was muss ich bei der berechnung beachten?
vielleicht könnten wir es an folgender aufgabe mal ausprobieren:
bildet U1 = [mm] (\vektor{x_{1} \\ x_{2}} \varepsilon [/mm] R [mm] ^{2}:X_{1}=X_{2}) [/mm] EIN UNTERVEKTORRAUM VON [mm] R^{2} [/mm] ?
wie rechnet man so eine aufgabe? help*
woody

        
Bezug
untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Fr 06.05.2005
Autor: Micha

Hallo!

> hi
> wir befassen uns gerade mit untervektorräumen in der
> matrizenrechnung. jedoch habe ich nix verstanden. also die
> frage, was sind untervektorräume und was muss ich bei der
> berechnung beachten?
>  vielleicht könnten wir es an folgender aufgabe mal
> ausprobieren:
>  bildet U1 = [mm](\vektor{x_{1} \\ x_{2}} \varepsilon[/mm] R
> [mm]^{2}:X_{1}=X_{2})[/mm] EIN UNTERVEKTORRAUM VON [mm]R^{2}[/mm] ?
>  wie rechnet man so eine aufgabe? help*
>  woody

Keine Panik! Wir versuchen unser Bestes hier! :-)

Also du hast die Menge U1 $:= [mm] \{ \vektor{x_1 \\ x_2} \in \IR^2 | x_1 = x_2 \} [/mm] $ gegeben. Was bedeutet das? Also von meinem gesamten Raum [mm] $\IR^2$ [/mm] betrachte ich jetzt nur die Paare [mm] $\vektor{ x_1 \\ x_2}$, [/mm] bei denen erste und zweite Komponente übereinstimmen.

Also z.B. (3 , 3) , (745.98, 745.98) usw. (Ich schreibe die (Spalten-)Vektoren mal transopniert als Zeilenvektoren, weil das einfacher aufzuschreiben ist, ok? )

Was müssen wir nun für unseren Untervektorraum (UVR) überprüfen?

Nun zunächst muss die 0 aus [mm] $\IR^2$, [/mm] also der Vektor (0,0) enthalten sein. Das ist er offensichtlich, da beide Komponenten übereinstimmen, und damit der Nullvektor in der Menge U1 liegt.

Dann müssen wir die Abgeschlossenheit bzgl. der Addition und skalaren Multiplikation überprüfen:

Man nimmt sich zwei vektoren aus U1 her und überprüft das:

Also nehmen wir allgemein (a,a) und (b,b) aus U1.

Dann ist (a,a) + (b,b) = (a+b, a+b). Dann liegt das aber auch in U1, weil es die Bedingung erste Komponente = zweite Komponente erfüllt.

Ebenso bei der Skalaren Multiplikation. Nehmen wir ein t aus [mm] $\IR$, [/mm] dann ist:

t (a,a) = (t a, t a) und das ist auch aus U1.

Damit haben wir alles gezeigt, was wir müssen und bewiesen, dass U1 ein UVR ist.

Wenn etwas unklar blieb, dass frage bitte!

Gruß Micha ;-)




Bezug
                
Bezug
untervektorraum: Ähnliche Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:50 Sa 07.05.2005
Autor: zoe

Hallo in den Matheraum,
wir haben gerade ähnliche Aufgaben und ich bin mir unsicher, ob mein Gedankengang der richtige ist.

Bei uns ist ein Zahlentripel gegeben: z.B. M = [mm] {(2\gamma, 0, 3\gamma)/ \gamma \varepsilon R} [/mm]

In meinen Augen wäre das ein UVR, da das Nullelement enthalten ist, und bezüglich der Addition und Multiplikation mit einem Skalar abgeschlossen.

Ein anderes Beispiel: M= {(5, [mm] 2\gamma, -\gamma)/\gamma \varepsilon [/mm] R}
ist dann kein UVR, da das Nullelement nicht enthalten ist.

Sind meine Gedanken so weit richtig?

Dankbare, nachfragende Grüße von zoe

Bezug
                        
Bezug
untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Sa 07.05.2005
Autor: Paulus

Hallo zoe

ja, deine Gedanken sind, wie immer, goldrichtig! :-)

Beim zweiten Beispiel könnte auch argumentiert werden, dass auch keine Addition funktioniert, da ja die erste Komponente konstant 5 sein muss. Sobald ich aber eine Addition macht, ist das nicht mehr der Fall.
Auch die Multiplikation mit einer Reellen Zahl klappt nicht. Wieder mit der gleichen Begründung wie bei der Addition.

Dies aber nur zur Ergänzun. Deine Feststellung, dass der Null-Vektor nicht vorhanden ist, genügt eigentlcih schon: Sehr schön! [respekt]

Mit lieben Grüssen und Küssen

Paul



Bezug
                                
Bezug
untervektorraum: Danke !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:03 Sa 07.05.2005
Autor: zoe

Danke lieber Paul *Kuß* ... und schon wieder *rotwerd* ... Gut, das kann ich dann als verstanden abhaken, bleibt aber noch ein Problem .. ich arbeite noch daran und werde mich dann dazu äußern *ankündig* ..

Riesenknuddel von zoe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de