www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - vektoren
vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Mi 06.08.2008
Autor: Simge

Aufgabe
gegeben: [mm] \overrightarrow{SA}(0/150); \overrightarrow{SB}(200/50); [/mm] S= ortsvektor
Berechenen Sie den Betrag von: [mm] |\overrightarrow{AB}|=\wurzel{x^2+y^2+z^2} [/mm]

Hallo allerseits!

Also ich hab wieder mal ein Problem. Wir haben das Thema Vektoren gestern angefangen aber ich versteh nur Bahnhof. Wäre echt lieb wenn ihr mir weiterhelfen würdet. Ich soll jetzt den betrag davon ausrechnen. Wäre das [mm] z^2 [/mm] nicht dagewesen hätte ich [mm] |\overrightarrow{AB}|= \overrightarrow{SA} [/mm] - [mm] \overrightarrow{SB} [/mm] gerechnet und dann halt das ergebnis unter die Wurzel gestellt. Aber mir fehlt ja noch ein komponent, nämlich z. wie weiß ich denn die daten von z? hmm, mein kopf ist durcheinander. Brauche echt Hilfe!

Danke im Voraus

Simge

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
        
Bezug
vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 06.08.2008
Autor: Al-Chwarizmi


> gegeben: [mm]\overrightarrow{SA}(0/150); \overrightarrow{SB}(200/50);[/mm]
> S= ortsvektor
>  Berechenen Sie den Betrag von:
> [mm]|\overrightarrow{AB}|=\wurzel{x^2+y^2+z^2}[/mm]
>  Hallo allerseits!
>  
> Also ich hab wieder mal ein Problem. Wir haben das Thema
> Vektoren gestern angefangen aber ich versteh nur Bahnhof.
> Wäre echt lieb wenn ihr mir weiterhelfen würdet. Ich soll
> jetzt den betrag davon ausrechnen. Wäre das [mm]z^2[/mm] nicht
> dagewesen hätte ich [mm]|\overrightarrow{AB}|= \overrightarrow{SA} - \overrightarrow{SB}[/mm]      [notok]

       dies müsste lauten:    [mm]\overrightarrow{AB}= \overrightarrow{SB} - \overrightarrow{SA}[/mm]

> gerechnet und dann halt das ergebnis
> unter die Wurzel gestellt. Aber mir fehlt ja noch ein
> komponent, nämlich z. wie weiß ich denn die daten von z?
> hmm, mein kopf ist durcheinander. Brauche echt Hilfe!
>  
> Danke im Voraus
>  
> Simge


Da in der Aufgabe nur zwei Komponenten (also x und y) vorkommen,
fällt das z einfach weg (oder man könnte z=0 setzen). Für einen
Vektor in der x-y-Ebene ist einfach:

           [mm] |\vec{v}|=\left| \vektor{x\\y}\right| =\wurzel{x^2+y^2} [/mm]

Bezug
                
Bezug
vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Mi 06.08.2008
Autor: Simge

Danke erstmal für deine schnelle Antwort, aber z müssen wir selber finden. Das z vielleicht Null sein könnte habe ich mir auch schon überlegt, aber dann hat das doch keinen Sinn mehr. vielleicht könnt ihr ja mit der zeichnung im Anhang was anfangen, die wir im Unterricht gemacht haben.

Danke vielmals

lg simge

Bezug
                        
Bezug
vektoren: ohne z
Status: (Antwort) fertig Status 
Datum: 14:02 Mi 06.08.2008
Autor: Loddar

Hallo Simge!


Auch in Deiner Zeichnung sieht es so aus, dass ihr in der Ebene (und nicht im Raum) gerechnet habt.

Von daher kannst Du hier bedenkenlos [mm] $z_A [/mm] \ = \ [mm] z_B [/mm] \ ( \ = \ 0 \ )$ annehmen.


Gruß
Loddar


Bezug
        
Bezug
vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mi 06.08.2008
Autor: luke314159

Hier die Antwort (sofern ich diene Frage richtig verstanden habe):
Du hast [mm] \vec{SA}+\vec{x} [/mm] = [mm] \vec{SB} [/mm] und sollst den Vektor [mm] \vec{x} [/mm] bestimmen. Duch umstellen erhältst du
[mm] \vec{x} [/mm] = [mm] \vec{SB} [/mm] - [mm] \vec{SA} [/mm]
also ist
[mm] \vec{x} [/mm] = [mm] {200\choose50} [/mm] - [mm] {0\choose150 } [/mm] = [mm] {200\choose-100 } [/mm]
Der Betrag ist dann [mm] \wurzel{200²+(-100)²} [/mm] = 20000
mfg
luke314159

Bezug
                
Bezug
vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Mi 06.08.2008
Autor: Simge

Vielen dank an alle, die mir geantwortet haben. Ich hab es jetzt verstanden!
Danke nochmals

liebe Grüße

Simge

Bezug
                
Bezug
vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Mi 06.08.2008
Autor: Al-Chwarizmi


>  Der Betrag ist dann
> [mm]\wurzel{200²+(-100)²}[/mm] = 20000     [notok]


Diese Rechnung stimmt natürlich nicht. Zwischen Addition
und Multiplikation muss man auch hier unterscheiden...

Bezug
                        
Bezug
vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:58 Do 07.08.2008
Autor: luke314159

hmmmm....geogebra gibt mir aber recht xD.....also kann nur ein misverständnis des sachverhalt hier schwierigkeiten machen.....wärst du so freundlich und erklärst mir, was ich falsch verstanden hab? danke im voraus.
mfg
luke314159

Bezug
                                
Bezug
vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Do 07.08.2008
Autor: weduwe


> hmmmm....geogebra gibt mir aber recht xD.....also kann nur
> ein misverständnis des sachverhalt hier schwierigkeiten
> machen.....wärst du so freundlich und erklärst mir, was ich
> falsch verstanden hab? danke im voraus.
>  mfg
>  luke314159


[mm] \sqrt{200^2+(-100)^2}=100\sqrt{5}=223.61....\neq [/mm] 200

vielleicht solltest du in geogebra unter EINSTELLUNGEN/ KOMMASTELLEN
die anzahl der nachkommastellen verändern
bei mir zeigt geogebra (natürlich) richtig a= 2.23261 (4 nk-stellen)

Bezug
                                        
Bezug
vektoren: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 10:02 Do 07.08.2008
Autor: Al-Chwarizmi

an Moderator: bitte entfernen !
Bezug
                                                
Bezug
vektoren: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 10:57 Do 07.08.2008
Autor: weduwe


>  
> > [mm][mm]\sqrt{200^2+(-100)^2}=100\sqrt{5}=223.61[/mm]

>  bei mir zeigt geogebra (natürlich) richtig a= 2.23261  (4 nk-stellen)       [notok]


was wäre es denn für ein Hexenwerk, eine Zahl richtig abzuschreiben


da davor  doch w = [mm] 100\sqrt{5} [/mm] steht,
sollte doch jedem aus dem kontext klar sein, dass ich in geogebra den maßstab 1:100 verwendet habe, um die dezimalstellen zu zeigen.

daher ist die zahl richtig abgeschrieben bzw. angegeben
daher zur korrektur [notok]


Bezug
                                                        
Bezug
vektoren: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 13:21 Do 07.08.2008
Autor: Al-Chwarizmi


> >  

> > > [mm]\sqrt{200^2+(-100)^2}=100\sqrt{5}=223.61[/mm]

  

>  bei mir zeigt geogebra (natürlich) richtig a= 2.23261  (4 nk-stellen)       [notok]

  
was wäre es denn für ein Hexenwerk, eine Zahl richtig abzuschreiben


da davor  doch w = [mm]100\sqrt{5}[/mm] steht,
sollte doch jedem aus dem kontext klar sein, dass ich in geogebra den
maßstab 1:100 verwendet habe, um die dezimalstellen zu zeigen.

daher ist die zahl richtig abgeschrieben bzw. angegeben
daher zur korrektur [notok]




die Sache mit dem Maßstab 1:100 habe ich mir gedacht,
obwohl es nirgends angegeben war.

jedoch ist immer noch  2.2361 [mm] \not= [/mm] 2.23261

LG
  

Bezug
                                                                
Bezug
vektoren: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 13:54 Do 07.08.2008
Autor: weduwe


> > >  

> > > > [mm]\sqrt{200^2+(-100)^2}=100\sqrt{5}=223.61[/mm]
>    
> >  bei mir zeigt geogebra (natürlich) richtig a= 2.23261  (4

> nk-stellen)       [notok]
>    
> was wäre es denn für ein Hexenwerk, eine Zahl richtig
> abzuschreiben
>
>
> da davor  doch w = [mm]100\sqrt{5}[/mm] steht,
>   sollte doch jedem aus dem kontext klar sein, dass ich in
> geogebra den
> maßstab 1:100 verwendet habe, um die dezimalstellen zu
> zeigen.
>  
> daher ist die zahl richtig abgeschrieben bzw. angegeben
>   daher zur korrektur [notok]
>  
>
>
> die Sache mit dem Maßstab 1:100 habe ich mir gedacht,
>  obwohl es nirgends angegeben war.
>  
> jedoch ist immer noch  2.2361 [mm]\not=[/mm] 2.23261
>  
> LG
>  

oje, das liegt an meinen augen.
da hast du natürlich recht, also [ok]


Bezug
                                        
Bezug
vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 Sa 09.08.2008
Autor: luke314159

lol xD...... oh gott wie kann mir nur so n dämlicher fehler unterlaufen.... *schäm*

Bezug
                                
Bezug
vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Do 07.08.2008
Autor: Al-Chwarizmi

>>>  Der Betrag ist dann  [mm]\wurzel{200²+(-100)²}[/mm] = 20000     [notok]

>> Diese Rechnung stimmt natürlich nicht. Zwischen Addition
>> und Multiplikation muss man auch hier unterscheiden...

> hmmmm....geogebra gibt mir aber recht xD.....

         ???

> also kann nur ein misverständnis des sachverhalt hier schwierigkeiten
> machen.....wärst du so freundlich und erklärst mir, was ich
> falsch verstanden hab? danke im voraus.


hallo luke,

[mm]\wurzel{200²+(-100)²}[/mm]=[mm]\wurzel{40000+10000}[/mm]=[mm]\wurzel{50000}[/mm][mm] \approx{223.6} [/mm]

Ich habe vermutet, dass du auf das falsche Ergebnis 20000 gekommen
bist, indem du statt [mm]\wurzel{40000+10000}[/mm] gerechnet hast: [mm]\wurzel{40000*10000}[/mm].

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de