www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vektoren, Ebene
vektoren, Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektoren, Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 So 08.01.2006
Autor: Trivalik

Aufgabe
a)Ermittle den Abstand der Geraden g1 und g2 voneinander.

g1: Gerade durch P1(8,2,-4) und P2(-8,0,8)

g2: x= [mm] \vektor{0\\-1\\2} [/mm]  + [mm] \lambda \vektor{3\\-1\\-2} [/mm] , [mm] \lambda \in \IR [/mm]


b) Gib die Gleichung der Geraden g an, für die gilt: g schneidet g1 und g2, g senkrecht g1, g senkrecht g2

zu a) ist g1: [mm] \vektor{8\\2\\-4} [/mm]  + t [mm] \vektor{-16\\-2\\12} [/mm]   ?

Wie geht das nun weiter, da im [mm] \IR^{3} [/mm] das nur mit Ebene machbar ist. Hatten bis jetzt nur punkte abstand von Ebene, aber gerade auf gerade weis ich net wies geht.

Bestimmt mit Hessesche normalform, doch wie bilde ich da eine Ebene?

b) [mm] \vektor{-16\\-2\\12} [/mm]  x  [mm] \vektor{3\\-1\\-2} [/mm] = senkrecht darauf stehend

ist das dann schon die lösung? oder ist das falsch?

        
Bezug
vektoren, Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 So 08.01.2006
Autor: mathmetzsch

Hallochen,

wenn du die Geradengleichungen beide hast und du den Abstand beider ermitteln sollst, dann muss das mit anderen Worten erst mal heißen, dass beide parallel oder windschief sind. Sonst würde der Abstand sich ja ständig verändern. Dann ist weiter die Frage, ob der kürzeste Abstand oder der Abstand zweier bel. Punkte gesucht ist. Diesen dann einfach mit der Abstandsgleichung berechnen.

Ein Rechenbeispiel findest du []hier.

Zu b)
Das reicht noch nicht. Erst ist zu ermitteln eine Gleichung, die senkrecht auf beiden Geraden steht. Dazu ein geeignetes GS aufstellen. Dann ist auch fraglich, ob g g1 schneidet!

Viele Grüße
Daniel

Bezug
                
Bezug
vektoren, Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:31 Mi 11.01.2006
Autor: Trivalik

Auf der Seite die du genannt hast komme ich bis zum gleichungsystem.

r,s,t ausrechen ok, aber der Punkt A bzw B? Wie kommt man da drauf?

Bezug
                        
Bezug
vektoren, Ebene: Parameter einsetzen
Status: (Antwort) fertig Status 
Datum: 10:47 Mi 11.01.2006
Autor: Roadrunner

Hallo Trivalik!


Die ermittelten Parameter werden nun in die entsprechenden Geradengleichungen eingesetzt.


Beispiel für Punkt $B_$ [mm] ($\rightarrow$[/mm]  []Beispielrechnung) mit $r \ = \ 0.6388$ :

[mm] $\overrightarrow{OB} [/mm] \ = \ [mm] \vektor{3\\-3\\1}+r*\vektor{2\\5\\4} [/mm] \ = \ [mm] \vektor{3\\-3\\1}+0.6388*\vektor{2\\5\\4} [/mm] \ = \ [mm] \vektor{3\\-3\\1}+\vektor{1.278\\3.194\\2.555} [/mm] \ = \ [mm] \vektor{4.278\\0.194\\3.555}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
vektoren, Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 11.01.2006
Autor: Trivalik

Also währe meine Berechnung für den Richtungsvektor richtig?

Wie bekommt man nun den Ortsvektor? Meine ganze klasse ist da am rätseln!

Bezug
                        
Bezug
vektoren, Ebene: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:41 Mi 11.01.2006
Autor: MathePower

Hallo Trivalik,

> Also währe meine Berechnung für den Richtungsvektor
> richtig?

Ja. [ok]

>  
> Wie bekommt man nun den Ortsvektor? Meine ganze klasse ist
> da am rätseln!

Einfach den errechneten Paramter in die entsprechende Geradengleichung einsetzen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de