www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vektorenrechnung in R3, Z3
vektorenrechnung in R3, Z3 < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorenrechnung in R3, Z3: körper mit +,* modulo p
Status: (Frage) beantwortet Status 
Datum: 14:41 Di 16.05.2006
Autor: toggit

Aufgabe
berechne:  [mm] \vektor{1\\2\\3}+\vektor{2\\3\\4} [/mm]   und [mm] 3*\vektor{2\\4\\0} [/mm]
indem du die Tripel als Vektoren in [mm] a)\IR^{3} b)\IZ^{3}_{5} c)\IZ^{3}_{7} d)\IZ^{3}_{13} [/mm] auffast. Dabei bezeichnet [mm] \IZ_{p} [/mm] mit p prim dem Körper in dem Addition und Multiplikation "modulo p" definiert sind.

Hi
eigentlich bin ich hier bisschen verwirt,
ich weis wie mach man Operationen mit Vektoren, genauso wie rechnet man mit "modulo p",
ABER: irgendwie habe ich diese Gefühl da ist was Gemeines versteckt

ich habe das wie folgt gelöst

seien Vektoren:

[mm] v_{1}=\vektor{v_{1a}\\v_{1b}\\v_{1c}}=\vektor{1\\2\\3} [/mm]
[mm] v_{2}=\vektor{v_{2a}\\v_{2b}\\v_{2c}}=\vektor{2\\3\\4} [/mm]
[mm] v_{3}=\vektor{v_{3a}\\v_{3b}\\v_{3c}}=\vektor{2\\4\\0}, [/mm]
dann:

[mm] a)\IR^{3} [/mm]

[mm] \vektor{1\\2\\3}+\vektor{2\\3\\4}=\vektor{v_{1a}+v_{2a}\\v_{1b}+v_{2b}\\v_{1c}+v_{3c}}=\vektor{1+2\\2+3\\3+4}=\vektor{3\\5\\7} [/mm]

[mm] 3*\vektor{2\\4\\0}=\vektor{3*v_{3a}\\3*v_{3b}\\3*v_{3c}}=\vektor{3*2\\3*4\\3*0}=\vektor{6\\12\\0} [/mm]


[mm] b)\IZ^{3}_{5} [/mm]

[mm] $v_{1a}+v_{2a}=1+2 [/mm]  (mod 5)=3  (mod 5)$
[mm] $v_{1b}+v_{2b}=2+3 [/mm]  (mod 5)=0  (mod 5)$
[mm] $v_{1c}+v_{3c}=3+4 [/mm]  (mod 5)=2  (mod 5)$    [mm] \Rightarrow [/mm]
[mm] \vektor{1\\2\\3}+\vektor{2\\3\\4}=\vektor{3\\0\\2} [/mm]

[mm] $3*v_{3a}=3*2 [/mm] (mod  5)=1  (mod  5)$
[mm] $3*v_{3b}=3*4 [/mm]  (mod  5)=2  (mod  5)$
[mm] $3*v_{3c}=3*0 [/mm]  (mod 5)=0  (mod 5)$  [mm] \Rightarrow [/mm]
[mm] 3*\vektor{2\\4\\0}=\vektor{1\\2\\0} [/mm]


[mm] c)\IZ^{3}_{7} [/mm]

[mm] $v_{1a}+v_{2a}=1+2 [/mm]  (mod 7)=3  (mod 7)$
[mm] $v_{1b}+v_{2b}=2+3 [/mm]  (mod 7)=5  (mod 7)$
[mm] $v_{1c}+v_{3c}=3+4 [/mm]  (mod 7)=0  (mod 7)$    [mm] \Rightarrow [/mm]
[mm] \vektor{1\\2\\3}+\vektor{2\\3\\4}=\vektor{3\\5\\0} [/mm]

[mm] $3*v_{3a}=3*2 [/mm] (mod  7)=6  (mod  7)$
[mm] $3*v_{3b}=3*4 [/mm]  (mod  7)=5  (mod  7)$
[mm] $3*v_{3c}=3*0 [/mm]  (mod 7)=0  (mod 7)$  [mm] \Rightarrow [/mm]
[mm] 3*\vektor{2\\4\\0}=\vektor{6\\5\\0} [/mm]


[mm] d)\IZ^{3}_{13} [/mm]

[mm] $v_{1a}+v_{2a}=1+2 [/mm]  (mod 13)=3  (mod 13)$
[mm] $v_{1b}+v_{2b}=2+3 [/mm]  (mod 13)=5  (mod 13)$
[mm] $v_{1c}+v_{3c}=3+4 [/mm]  (mod 13)=7  (mod 13)$    [mm] \Rightarrow [/mm]
[mm] \vektor{1\\2\\3}+\vektor{2\\3\\4}=\vektor{3\\5\\7} [/mm]

[mm] $3*v_{3a}=3*2 [/mm] (mod  13)=6  (mod  13)$
[mm] $3*v_{3b}=3*4 [/mm]  (mod  13)=12  (mod  13)$
[mm] $3*v_{3c}=3*0 [/mm]  (mod 13)=0  (mod 13)$  [mm] \Rightarrow [/mm]
[mm] 3*\vektor{2\\4\\0}=\vektor{6\\12\\0} [/mm]

So... das scheint mir alles in Ordnung sein ist aber auch? oder mache ich da was falsch- wenn ja dann wo und was?
Danke für Eure Hilfe
mfg toggit


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
vektorenrechnung in R3, Z3: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 16.05.2006
Autor: MatthiasKr

Hallo toggit,

ich kann in der Aufgabe keine Falle erkennen... Deshalb: [daumenhoch]!

VG
Matthias

Bezug
                
Bezug
vektorenrechnung in R3, Z3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Di 16.05.2006
Autor: toggit

Danke für so schnelle antwort, und ich freue mich dass ich das gut gemacht habe
gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de